Appendix D Representative Project Planning Methodologies The following representative decision matrices are provided as examples only of the types of issues and methodologies recommended to be undertaken when planning a prefabrication construction project. The project managers/planners should develop their own planning tools including logic charts, fault trees, scheduling software, decision matrices, etc., with information and criteria specific to their project and they should not be limited to or constrained by the information presented in the following matrices. The following matrices are divided into two types. The first set of matrices (Matrix E-1 through E-7), designated by an E, is used to qualitatively evaluate a project. The second set of matrices (Matrix S-1 through S-7), designated by an S, is used to numerically select a given feature for a project. | MATRIX E-1 CON | NTRACT METHOD E | VALUATION MATRIX | X | | | | |-----------------------------|--|--|--|--|---|--| | | DESIGN BID CONSTRUCT,
(100% DESIGN BEFORE BID) | | DESIGN-BUILD,
(20 TO 35% DESIGN BEFORE BID) | | TENDER DESIGN BID CONSTRUCT,
(60 TO 75% DESIGN BEFORE BID) | | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | RISK
MANAGEMENT | CURRENTLY THE
MOST FAMILIAR
METHOD OF
CONTRACTING. | RISK THAT DESIGNERS MAY NOT FULLY UNDERSTAND CONTRACTOR'S CONSTRUCTION PLAN. | INTEGRATED DESIGN AND CONSTRUCT TEAM CAN MINIMIZE RISK WITH AN EFFICIENT PLAN. | RISK OF RETAINING
POOR DESIGN TEAM | MORE CORPS CONTROL OF DESIGN WHILE BRINGING THE CONTRACTOR INTO THE DESIGN PROCESS. | COMBINATION OF
DISADVANTAGES
FROM DESIGN BID
CONSTRUCT AND
DESIGN-BUILD. | | RISK SHARING | CORPS CAN USE
THEIR FAMILIARITY
WITH THE PROJECT
TO MINIMIZE RISK. | CORPS ASSUMES
MORE
RESPONSIBILITY. | RESPONSIBILITY
RESTS WITH ONE
ENTITY. | CORPS STILL CARRIES SOME RESPONSIBILITY FOR POOR DESIGNS. | MORE CORPS CONTROL OF DESIGN WHILE BRINGING THE CONTRACTOR INTO THE DESIGN PROCESS. | COMBINATION OF
DISADVANTAGES
FROM DESIGN BID
CONSTRUCT AND
DESIGN-BUILD. | | SCHEDULE | OWNER HAS MOST CONTROL. | SLOWEST | FASTEST | OWNER HAS LEAST CONTROL. | MODERATE
ACCELERATION | MULTIPLE
INTERFACES. | | TECHINICAL
QUALIFICATION | POTENTIAL TO
SECURE
SEPARATELY THE
MOST QUALIFIED
DESIGNER AND
CONTRACTORS. | RESTRICTIONS ON CONTRACTOR QUALIFICATION MAY LIMIT COMPETITION. | THIS METHOD OF CONTRACTING WILL ATTRACT LARGE, TECHNICALLY, QUALIFIED CONTRACTORS. | RESTRICTIONS ON CONTRACTOR QUALIFICATION MAY LIMIT COMPETITION. | | MOST QUALIFIED
DESIGNER CANNOT
HANDLE COMPLETE
DESIGN. | | FINANCIAL
QUALIFICATION | TRADITIONAL | POTENTIAL TO
ACCEPT A LESS
FINANCIALLY
QUALIFIED
CONTRACTOR BASED
ON LOW BID. | THIS METHOD OF CONTRACTING WILL ATTRACT LARGE, FINANCIALLY QUALIFIED CONTRACTORS. | THIS METHOD OF
CONTRACTING IS
MOST SUITABLE FOR
LARGE PROJECTS. | MOST SUITABLE
FOR
INTERMEDIATE
SIZED PROJECTS. | MOST SUITABLE
FOR INTERMEDIATE
SIZED PROJECTS. | | | | | (CONTINUED) | | | | | MATRIX E-1 (CC | ONCLUDED) | | | | | | |-------------------------------|---|--|--|--|--|---| | | | ID CONSTRUCT,
IGN BEFORE BID) | DESIGN
(20 TO 35% DESI | I-BUILD,
GN BEFORE BID) | | N BID CONSTRUCT,
SIGN BEFORE BID) | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | COST BID | MOST
COMPETITION. | LOW-BID
PROCUREMENT MAY
NOT SECURE MOST
QUALIFIED
CONTRACTOR. | POTENTIAL FOR
LOWEST COST. | REDUCED BID
COMPETITION, MORE
SUBJECTIVE BID
EVALUATION. | INTERMEDIATE COMPETITION WITH POTENTIAL TO CAPTURE SOME SAVINGS BY INVOLVING CONTRACTOR IN THE DESIGN. | INTERMEDIATE POTENTIAL TO MAXIMIZE SAVINGS TO CORPS. | | A/E SUPPORT | CORPS CAN
SECURE MOST
QUALIFIED
DESIGNERS. | DESIGNERS ARE REQUIRED TO REMAIN REMOVED FROM CONTRACTOR. POTENTIAL FOR MORE CONFLICT. | DESIGNERS MAY DEVELOP LONG-TERM RELATIONSHIP WITH (AND GAIN UNDERSTANDING OF THE NEEDS OF) THE CONTRACTOR. | DESIGNER MAY BASE
DECISIONS ON COST
RATHER THAN
QUALITY. | THE EXPERIENCE OF TWO DIFFERENT DESIGNERS IS GAINED. | THE MOST
QUALIFIED
DESIGNER DOES
NOT DEVELOP THE
COMPLETE DESIGN. | | QA/QC | TRADITIONAL. | DESIGNERS MAY NOT
FULLY UNDERSTAND
CONSTRUCTION
METHOD. | DESIGNER FULLY UNDERSTANDS THE CONTRACTOR'S MEANS AND METHODS. | REQUIRES THIRD PARTY VERIFICATION. | INTERMEDIATE
CONTROL OF
QA/QC. | COMBINATION OF
DISADVANTAGES
FROM DESIGN BID
CONSTRUCT AND
DESIGN-BUILD. | | VALUE
ENGINEERING | TRADITIONAL. | FULL ADVANTAGE OF
CONTRACTOR
PARTICIPATION IN
DESIGN IS NOT
CAPTURED AND
CORPS ONLY GETS
50% OF SAVINGS. | CONTRACTOR PARTICIPATES IN DESIGN PHASE WITH RESULTING POTENTIAL SAVINGS. | SAVINGS FROM CONTRACTOR INNOVATION MUST BE CAPTURED IN DESIGN/BUILD BID PROCESS, NOT BY VALUE ENGINEERING. | INTERMEDIATE
POTENTIAL
SAVINGS TO
CORPS. | POTENTIAL SAVING
BY INVOLVING
CONTRACTOR IN
THE EARLY DESIGN
IS NOT REALIZED. | | PRESCRIPTIVE
SPECIFICATION | MOST SUITABLE
FOR
PRESCRIPTIVE
SPECIFICATION | OVER PRESCRIPTION
MAY INCREASE COST
AND/OR CORPS
LIABILITY. | ANY PRESCRIPTIVE
SPECIFICATION IS
CUSTOMIZED TO
CONTRACT MEANS
AND METHODS. | LEAST SUITABLE FOR
PRESCRIPTIVE
SPECIFICATION. | INTERMEDIATE
SUITABILITY. | NONOPTIMIZED USE
OF SPECIFICATION | | PERFORMANCE
SPECIFICATION | TRADITIONAL | LEAST SUITABLE FOR
PERFORMANCE
SPECIFICATION | MOST SUITABLE FOR
PERFORMANCE
SPECIFICATION | REQUIRES CAREFUL
MONITORING OF
CONSTRUCTION | INTERMEDIATE
SUITABILITY | NONOPTIMIZED USE
OF SPECIFICATION | | IMPACT FROM
NAVIGATION | RISK/CAUSATIVE CURRENTS. VISIBILITY. POOR PLANNING. POOR COMMUNICATION. PROXIMITY OF TRAFFIC TO CONSTRUCTION | RUCTION MITIGATION GOOD PLANNING. GOOD COMMUNICA- TION. SAFETY LINES. TAUT LINES. TEAM- WORK. LIMITED WATER VELOCITY FOR DIVING. ETC. PROVIDE PILOT, PROVIDE HELP BOAT, | NAV RISK/CAUSATIVE LIABILITY FOR HARMING DIVERS. LIABILITY FOR | MITIGATION MAINTAIN SAFETY ZONE. SCHEDULE WORK WHEN THERE IS NO TRAFFIC. USE BARRIERS. IMPROVE CONTROL OF TRAFFIC. | POOR PRODUCTIVITY FROM DIVER. DIVERS MAY PROHIBIT CONCURRENT WORK IN SAME AREA. | MITIGATION MINIMIZE USE OF DIVERS BY USE OF TEMPLATES, GUIDES, SONIC IMAGING, ETC. IMPROVE DIVER PRODUCTIVITY BY: PROVIDING REACTION POINTS, TOOLS, ETC. | |---------------------------|---|--|---|--|--|---| | IMPACT FROM
NAVIGATION | CURRENTS. VISIBILITY. POOR PLANNING. POOR COMMUNICATION. PROXIMITY OF TRAFFIC TO CONSTRUCTION | GOOD PLANNING. GOOD COMMUNICA- TION. SAFETY LINES. TAUT LINES. TEAM- WORK. LIMITED WATER VELOCITY FOR DIVING. ETC. PROVIDE PILOT, | LIABILITY FOR
HARMING DIVERS. | MAINTAIN SAFETY
ZONE. SCHEDULE WORK
WHEN THERE IS NO
TRAFFIC. USE
BARRIERS. IMPROVE
CONTROL OF TRAFFIC. | POOR PRODUCTIVITY FROM DIVER. DIVERS MAY PROHIBIT CONCURRENT WORK IN SAME AREA. | MINIMIZE USE OF
DIVERS BY USE OF
TEMPLATES,
GUIDES, SONIC
IMAGING, ETC.
IMPROVE DIVER
PRODUCTIVITY BY:
PROVIDING
REACTION POINTS, | | IMPACT FROM
NAVIGATION | VISIBILITY. POOR PLANNING. POOR COMMUNICATION. PROXIMITY OF TRAFFIC TO CONSTRUCTION | GOOD COMMUNICATION. SAFETY LINES. TAUT LINES. TEAMWORK. LIMITED WATER VELOCITY FOR DIVING. ETC. PROVIDE PILOT, | HARMING DIVERS. | ZONE. SCHEDULE WORK
WHEN THERE IS NO
TRAFFIC. USE
BARRIERS. IMPROVE
CONTROL OF TRAFFIC. | PRODUCTIVITY FROM DIVER. DIVERS MAY PROHIBIT CONCURRENT WORK IN SAME AREA. | DIVERS BY USE OF
TEMPLATES,
GUIDES, SONIC
IMAGING, ETC.
IMPROVE DIVER
PRODUCTIVITY BY:
PROVIDING
REACTION POINTS, | | NAVIGATION | TRAFFIC TO
CONSTRUCTION | * | LIABILITY FOR | | | | | | AND LIMITED CONTROL OF TRAFFIC. LIMITED WORKING PERIOD OR WORK INTERRUPTION. | RADAR, BARRIERS.
CONSTRUCTION
SEQUENCE. MINIMIZE
INSTALLATION
DURATION. ETC. | IMPACT. DELAYS
TO AVOID
CONSTRUCTION | ACCELERATE-MINIMIZE CONSTRUCTION IN THE RIVER. SAFETY ZONE. SCHEDULING; BARRIERS. TRAFFIC
CONTROL. PHYSICAL MODELS AT ERDC USE OF SIMULATORS. ANALYZE HISTORIC DATA. | CONSTRUCTION PERIODS MAY BE LIMITED BY THE NEED TO ACCOMMODATE TRAFFIC. LIMITED WORKING PERIOD OR WORK INTERRUPTION. | PLAN ACCORDINGLY. ACCELERATE CONSTRUCTION IN THE RIVER. | | CONFINED SPACES | IN SPACES SUCH | VENTILATION. FIRE CONTROL. EVACUATION PLAN. COMMUNICATIONS. LIMIT AMOUNT OF CONFINED WORK. | MINIMAL RISK EXCEPT FOR IMPACT AGAINST CONFINED SPACE. | SEE MEASURES FOR
CONTROLLING IMPACT
(ABOVE). | POOR
PRODUCTIVITY IN
CONFINED
SPACES. | MINIMIZE WORK IN
CONFINED SPACES.
USE MORE
MECHANICAL
DEVICES. | | HEAVY LIFTS | CRANES CAN POSE
RISKS OF CON- | USE EQUIPMENT WITH ADEQUATE RATING; STABILIZE FLOATING CRANES WITH: SPUDS, OUT- RIGGERS, OR REACTING AGAINST THE STRUCTURE. | MOVEMENT AND OPERATION OF CRANE BARGES CAN POSE RESTRICTIONS ON TRAFFIC. (SHEET 1 OF 3) | SCHEDULING. USE OF
LARGER PREFAB. UNITS. | POTENTIAL
DELAY DUE TO
AN ACCIDENT. | USE CERTIFIED EQUIPMENT IN GOOD CONDITION, OPERATED BY TRAINED PERSONNEL. | | MATRIX E-2 | (CONTINUED) | | | | | | |---|---|--|--|--|---|---| | | CONSTRI | JCTION | NAVIO | GATION | SCH | EDULE | | ITEM | RISK/CAUSATIVE | MITIGATION | RISK/CAUSATIVE | MITIGATION | RISK/CAUSATIVE | MITIGATION | | TRANSPORT
PHASE | SINKING. DROPPING.
IMPACT. WEATHER.
RIVER STAGE. DRAFT.
BRIDGE RESTRIC-
TIONS. TRAFFIC
RESTRICTIONS. | CERTIFYING. INSPECTING. COMMISSIONING. SCHEDULING. PLANNING. | TRANSPORT OF
ELEMENTS CAN
POSE RESTRICTIONS
ON TRAFFIC. | CERTIFYING. INSPECTING. COMMISSIONING. SCHEDULING. PLANNING. | POTENTIAL
DELAY DUE TO
AN ACCIDENT. | CERTIFYING. INSPECTING. COMMISSIONING. SCHEDULING. PLANNING. | | TREMIE
STOPPAGE | INTERRUPTION OF
CONCRETE SUPPLY
CAN CAUSE COLD
JOINTS, AND VOIDS. | REDUNDANCE IN
CONCRETE SUPPLY.
STEEL ACROSS
POTENTIAL COLD
JOINTS. HIGH PRES-
SURE WATER JETS
TO CLEAN JOINT. | MINIMAL RISK. | AVOID IMPACT
DURING TREMIE
PLACEMENT. | POTENTIAL DELAY DUE TO AN ACCIDENT. POTENTIAL DELAY WHILE ADDRESSING POOR CONCRETE. | USE NEW EQUIPMENT. PROVIDE REDUNDANCE. TRAINED PERSONNEL. PLAN EXECUTION. | | WORK WITH
HIGH-
PRESSURE
TOOLS | ACCIDENT FROM:
JACKS, RAMS,
CUTTING TOOLS,
WATER JETS, ETC. | USE TRAINED PERSONNEL AND FOLLOW PRESCRIBED SAFETY PROCEDURES. | MINIMAL RISK. | | POTENTIAL
DELAY DUE TO
AN ACCIDENT. | USE NEW EQUIP-
MENT. PROVIDE
REDUNDANCE.
TRAINED
PERSONNEL. PLAN
EXECUTION. | | HAZARDOUS
WEATHER | HIGH WINDS,
LIGHTNING. HEAVY
RAIN. FREEZING. ETC. | ALLOWANCE FOR
WEATHER DAYS.
AVOID WORK IN
ADVERSE SEASONS.
USE PREFABRICA-
TION FACILITIES
WITH COVERED
WORK AREAS. | SAME AS CURRENT
SITUATION. | | POTENTIAL WEATHER DELAYS. NAR- ROW CONSTRUC- TION WINDOWS OF OPPORTUNITY, AND DELAYS WAITING FOR WINDOWS. | ALLOWANCE FOR WEATHER DAYS. AVOID WORK IN ADVERSE SEASONS. USE PREFABRICA- TION FACILITIES WITH COVERED WORK AREAS. | | HAZARDOUS
RIVER
CONDITIONS | RAPID RIVER RISE DUE
TO STORMS. HIGH
WATER VELOCITIES.
MOVING RIVER
BOTTOM. | AVOID IN-RIVER WORK IN ADVERSE SEASONS. MOORING LINES. SPUD PILES. DOLPHINS. TEMPORARY SCOUR PROTECTION. FLOW DEFLECTORS. | SAME AS CURRENT SITUATION. (SHEET 2 OF 3) | | POTENTIAL DELAYS DUE TO ADVERSE RIVER CONDITIONS. | PROVIDE
ALLOWANCE IN
SCHEDULE FOR
DELAYS. | | MATRIX E-2 (C | MATRIX E-2 (CONCLUDED) | | | | | | | | | | |--------------------------------------|---|--|---|---|--|--|--|--|--|--| | | CONST | RUCTION | NAVIG | ATION | SCH | EDULE | | | | | | ITEM | RISK/CAUSATIVE | MITIGATION | RISK/CAUSATIVE | MITIGATION | RISK/CAUSATIVE | MITIGATION | | | | | | TOLERANCE-
CONNECTION
PROBLEMS | EXCESSIVE DEVIATION FROM DESIGN REQUIRING CORRECTION. | ADJUST UNIT BEFORE PLACING TREMIE. CUTTING WITH: WATER JETS, THERMO-LANCE, SAWS, ETC. GROUT INJECTION. | MINIMAL | | POTENTIAL DELAY
UNTIL REPAIR
DETERMINED. | RAPID RESPONSE TO
REPAIR ERROR. | | | | | | SINKING-
DROPPING UNIT | SINKING A
FLOATING UNIT,
OR DROPPING A
LIFTED ELEMENT. | SUNKEN UNITS CAN
SOMETIMES BE
REFLOATED.
DROPPED ELEMENTS
CAN SOMETIMES BE
PICKED UP. | SINKING IN THE
MAIN CHANNEL CAN
POSE AN
OBSTRUCTION TO
TRAFFIC. | DREDGE BY-PASS
CHANNEL. REMOVE
OBSTRUCTION. | DELAY DUE TO
POTENTIAL LOSS
OF ELEMENTS | RAPID RESPONSE TO
REPAIR OR REPLACE
DAMAGED UNITS. | | | | | | | | | (SHEET 3 OF 3) | | - | - | | | | | | | FLOAT | -IN METHOD | HEAVY LIFT | T-IN METHOD | LIGHT LIF | T-IN METHOD | |------------------------|--|--|--|---|--|--| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | NAVIGATION | QUICK
INSTALLATION
TIME CAN
MINIMIZE
EFFECT ON
NAVIGATION. | RISK OF IMPACT
DURING TOW AND
INSTALLATION
CAUSING DELAYS. | RELATIVELY QUICK
INSTALLATION AND
ABILITY TO DEPLOY
AND WITHDRAW
QUICKLY. | HEAVY-LIFT EQUIPMENT IS SUBJECT TO IMPACT, CAUSING DELAYS. | ABILITY TO DEPLOY AND WITHDRAW QUICKLY, MAY REDUCE DISRUPTION TO NAVIGATION. | LIGHT-LIFT
EQUIPMENT AND
SMALL UNITS ARE
SUBJECT TO
IMPACT, CAUSING
DELAYS. | | OUT-LOADING | LOAD-OUT CAN
BE TIMED TO
MATCH PERIOD
OF
APPROPRIATE
RIVER STAGE. | OPTIMAL PERIODS FOR LOAD-OUT MAY NOT MATCH OPTIMAL TIMES FOR TRANSPORT AND INSTALLATION. | YEAR-ROUND LOAD-
OUT CAN TYPICALLY
BE PROVIDED BY
SKIDWAYS, OR OTHER
LOAD-OUT METHODS. | LESS EXPENSIVE
LOAD-OUT SYSTEMS
MAY IMPOSE
SCHEDULING
RESTRICTIONS. | LOAD-OUT CAN
TYPICALLY BE
ACCOMMO-
DATED YEAR-
ROUND | LOAD-OUT OF LIGHT
UNITS MAY BE
ADVERSELY
AFFECTED BY
SEASONAL RIVER
CONDITIONS. | | RIVER
CONDITIONS | MAXIMIZED OFFSITE PREFABRI- CATION MAY MINIMIZE EXPOSURE TIME TO RIVER CONDITIONS. | RIVER CURRENTS
AND DRAFT REQUIRE-
MENTS MAY
ADVERSELY AFFECT
FLOAT-IN OPTIONS,
AND BOTTOM
PREPARATION. | LESS AFFECTED BY
RIVER CONDITIONS
THAN LIGHT LIFT-IN
METHOD. | RIVER CONDITIONS
CAN DELAY
PREPARATORY AND
INSTALLATION WORK. | USE OF FRAMES
AND GUIDES
CAN REDUCE
THE INFLUENCE
OF RIVER
CONDITIONS ON
THE METHOD. | MAXIMIZES
DURATION OF
EXPOSURE TO
RIVER CONDITIONS. | | WEATHER
CONDITIONS | CAN MINIMIZE
TIME OF
EXPOSURE TO
BAD WEATHER
IN THE RIVER. | OFFSITE PREFABRICA-
TION FACILITY MAY
BE DIFFICULT TO
PROTECT FROM
WEATHER. | OFFSITE PREFABRICATION AND USE OF LARGE EQUIPMENT CAN REDUCE WEATHER DELAYS. | EXPENSIVE EQUIPMENT CAN INCREASE PENALTY DUE TO DOWNTIME. | STAND-DOWN
TIME IS LESS
COSTLY DURING
BAD WEATHER. | MAXIMIZES
DURATION OF
EXPOSURE TO
WEATHER ON THE
RIVER. | | REAL ESTATE
PERMITS | CONSTRUCTION
ON A BARGE
WHICH DOES
NOT REQUIRE A
PERMIT. | LONG LEAD TIME CAN
BE REQUIRED TO
PERMIT NEW OFFSITE
FACILITIES. | CONSTRUCTION ON A
BARGE OR IN AN
EXISTING FACILITY
MAY NOT REQUIRE
PERMITTING. | LONG LEAD TIME CAN
BE REQUIRED TO
PERMIT NEW OFFSITE
FACILITIES. | EXITING FACILITIES MAY EXIST THAT DO NOT REQUIRE PERMITTING. | LONG LEAD TIME
CAN BE REQUIRED
TO PERMIT NEW
OFFSITE FACILITIES. | | MATRIX E-3 (CON | CLUDED) | | | | | | |----------------------------|---|--|---|---|---|---| | | FLOAT-II | N METHOD | HEAVY LIF | T-IN METHOD | LIGHT LIF | T-IN METHOD | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | ENVIRONMENT
REPORTS | CONSTRUCTION ON
A BARGE, WHICH
DOES NOT REQUIRE
A REPORT, IS AN
OPTION. | CAN BE REQUIRED | CONSTRUCTION ON
A BARGE OR IN AN
EXISTING FACILITY
MAY NOT REQUIRE
A REPORT. | LONG LEAD TIMES
CAN BE REQUIRED
FOR REPORTS FOR
NEW OFFSITE
FACILITIES. | CONSTRUCTION
ON A BARGE OR
IN AN EXISTING
FACILITY MAY
NOT REQUIRE A
REPORT. |
LONG LEAD TIMES
CAN BE REQUIRED
FOR REPORTS FOR
NEW OFFSITE
FACILITIES. | | CULTURAL
REPORTS | CONSTRUCTION ON
A BARGE, WHICH
DOES NOT REQUIRE
A REPORT, IS AN
OPTION. | CAN BE REQUIRED | CONSTRUCTION ON
A BARGE OR IN AN
EXISTING FACILITY
MAY NOT REQUIRE
A REPORT. | LONG LEAD TIMES
CAN BE REQUIRED
FOR REPORTS FOR
NEW OFFSITE
FACILITIES. | CONSTRUCTION
ON A BARGE OR
IN AN EXISTING
FACILITY MAY
NOT REQUIRE A
REPORT. | LONG LEAD TIMES
CAN BE REQUIRED
FOR REPORTS FOR
NEW OFFSITE
FACILITIES. | | TRIAL TESTS | CAN TYPICALLY BE
ACCOMMODATED
IN THE
CONSTRUCTION
SCHEDULE. | UNUSUAL FLOATING
SHAPES MAY
REQUIRE TESTING
FOR CLASSIFICA-
TION AND
COMMISSIONING. | CAN TYPICALLY BE
ACCOMMODATED IN
THE CONSTRUCTION
SCHEDULE. | | CAN TYPICALLY
BE ACCOMMO-
DATED IN THE
CONSTRUCTION
SCHEDULE. | PLACEMENT PROCEDURES AND TREMIE CONCRETE OPERATIONS MAY REQUIRE TRIAL TESTS. | | STAND-DOWN
CONCERNS | RAPID DEPLOYMENT AND MAXIMIZED OFFSITE PREFABRICATION CAN REDUCE EXPOSURE TO DOWNTIME | LARGE FLOATING UNITS MAY REQUIRE LOAD DOWNTIME UNIT WINDOWS OF OPPORTUNITY ALLOW FOR TOW AND INSTALLATION. | LARGE EQUIPMENT
IS GENERALLY
WELL MAINTAINED
AND CAN WORK IN
ADVERSE
CONDITIONS. | DOWNTIME CAN BE
COSTLY DUE TO USE
OF EXPENSIVE
EQUIPMENT. | COST OF DOWN-
TIME IS NOT AS
EXPENSIVE AS
FOR HEAVY-LIFT
METHOD. | LIGHT EQUIPMENT
MAY NOT BE ABLE
TO WORK IN
ADVERSE
CONDITIONS. | | OFFSITE
CONCERNS | ALLOWS PARALLEL CONSTRUCTION | MAY REQUIRE LONG
TOW FROM EXISTING
FACILITIES. | ALLOWS PARALLEL CONSTRUCTION | LOAD-OUT AND
TRANSPORT MAY
POSE COMPLICATIONS | MANY EXISTING
SITES MAY BE
AVAILABLE. | MAXIMIZES
DURATION OF
EXPOSURE TO
RIVER CONDITIONS. | | COMMISSIONING
EXERCISES | CAN BE
SCHEDULED INTO
THE CONSTRUC-
TION PLAN. | REQUIRED PRIOR TO
TRANSPORT | PRE-EXISTING HEAVY-LIFT EQUIPMENT HAS ALREADY BEEN COMMISSIONED | NEW HEAVY-LIFT
EQUIPMENT WILL
REQUIRE
COMMISSIONING. | PRE-EXISTING
LIGHT-LIFT
EQUIPMENT HAS
ALREADY BEEN
COMMISSIONED | NOT NORMALLY
REQUIRED. | | BACKFILLING OVER ROCK CAN ROCK CAN MINIMIZE SURFACE PREPARATION FOR FOUND DIRECTLY ON ROCK RATHER THAN ON A BACKFILL MATERIAL. SCREEDING SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. SCREED LAYERS. MINIMIZE SURFACE PREPARATION. SCREED LAYERS. MULTIPLE OPTIONS SCREED MATER THAN ON A BOTTOM SCREED SYSTEMS, AUGER SYSTEMS, ETC. TEMPORARY SCOUR PROVIDE MATERIAL CAN MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. BACKFILL MATERIAL. MATERIAL. AUGER SYSTEMS, ETC. TEMPORARY SCOUR PROTECTION BACKFILL MATERIAL AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. SEQUENCE- CAN BE USED. SCREED NG: MATERIAL CAN MINIMIZE SURFACE PREPARATION. ARSOCIATED WITH BACKFILL MATERIAL CAN MINIMIZE SURFACE PREPARATION. ASSOCIATED WITH BACKFILL MATERIAL CAN MINIMIZE SURFACE PREPARATION. SCREEDING ASSOCIATED WITH BACKFILL MATERIAL CAN MINIMIZE SURFACE PREPARATION. SCREEDING ASSOCIATED WITH BACKFILL MATERIAL CAN MINIMIZE SURFACE PREPARATION. SCREEDING ARTICULATED MATS AND INFLUENCE ON SIZED SCOUR STONE CONSTRUCTION SIZED SCOUR STONE CONSTRUCTION SEQUENCE- CAN BE USED. SEQUENCE- | | ROCK FOU | UNDATION | SAND FOUNI | DATION | COHESIVE MATER | RIAL FOUNDATION | |--|-------------|-----------------|------------------|---------------------|---------------|------------------|------------------| | RECAVATION OR DREDGING OR DAYALLABLE INCLUDING: DRILL- ING A BLASTING; RIPPING; LINE DRILLING; JACK- HAMMERING, CLAMSHELLING; ETC. ALSO ABILITY TO DEPLOY & WITHDRAW RAPDLY. SOIL GROUTING OR BY- PASS. REPINITG OR BY- PASCRICABLE. SOIL GROUTING SERECT OR BY- ASSOCIATED WITH A CUTTER- HEAD, OTHERWISE CAVATIONS OR ACKHOLING, BRACKHILL MITHA A CUTTER- HEAD, OTHERWISE CAVATIONS OR ACKHOLING, BRACKHILL MITHA A CUTTER- HEAD, OTHERWISE CAVATIONS OR ACKHOLING, BRACKHILL MITHA A CUTTER- HEAD, OTHERWISE COUNTING OR BY- RACTICABLE TIME ACTICABLE THE CHESIVE MIGRATION AND MIGRATION AND MIGRATION AND MIGRATION | | POTENTIAL | POTENTIAL | POTENTIAL | POTENTIAL | POTENTIAL | POTENTIAL | | OR AVAILABLE NCLUDING: DRILL) OR SAVAILABLE NING AND MAY REQUIRE REPROBLEMENT THE NOR AND SERVENCE ON SUMING AND MAY REQUIRE REPROBLEMENT TRAPS COLAMSHELLING; SAVE HAMMERING, CLAMSHELLING, DEPLOYMENT AND DEPLOYMENT AND DEPLOYMENT AND DEPLOYMENT AND DEPLOYMENT AND PASS. SOIL GROUTING OR BY-PASSING RACIFICABLE. BACKFILL BACKFILL BACKFILL SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING TI MAY BE PREF-PROBLE TO OND BE SUCH AND AND MINIMIZE SURFACE PREPARATION. PROTECTION AND MAY REQUIRE SUBMENT TRAPS SUCH AND AND MATERIAL. SCREEDING SCREEDING TI MAY BE PREF-PROBLE TO OND BE SUCH AND THE BACKFILL AND A MINIMIZE SURFACE PREPARATION. PROTECTION AND MAY REQUIRE SUBMENT TRAPS SUCH AND AND MATERIAL. SCREEDING SCREEDING TI MAY BE PREF-PROBLE TO OND BE SUCH AND AND MAY REQUIRE SUBMENT TRAPS SUCH AND THE BACKFILL AND AND MAY REQUIRE SUCH AND AND MAY REQUIRE SUCH AND THE PROPERTIES OF | ITEM | SOLUTIONS | PROBLEMS | SOLUTIONS | PROBLEMS | SOLUTIONS | PROBLEMS | | INCLUDING: DRILL- ING A BLASTING; RIPPING; LINE DRILLING: JACK- HAMMERING, CLAMSHELLING IS ETC. ALSO ABLITY TO DEPLOY & WITH RAPID SOIL RAPIDLY. SOIL ROCK CAN RAPIDLY. SOIL BACKFILL BEACKING THE DRILLING: JACK- HAMMERING, CLAMSHELLING: DEPLOYMENT AND WITHDRAW RAPIDLY. SOIL BACKFILL BEACKING THE DRILLING: DEPLOYMENT AND WITHDRAW RAPIDLY. SOIL BACKFILL BEACKING THE DRILLING: DEPLOYMENT AND WITHDRAW RAPIDLY. SOIL BACKFILL BEACKING THE DRILLING: DEPLOYMENT AND WITHDRAW RAPIDLY. SOIL BACKFILL BEACKING THE DRILLING: DEPLOYMENT AND WITHDRAW RAPIDLY. THIS WORK CAN BE EXPENSIVE WITH PASSING IS PRACTICABLE. SPRACTICABLE. SPRACTICABLE. SPRACTICABLE. TIME BACKFILL BEACKFILL NO TOP OF ROCK CAN HONDIFICATION PREPERABLE TO FOUND DIRECTLY SCOUR PREPARATION. PROTECTION SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING TMAY BE PREF- BACKFILL NO TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. PROTECTION TI MAY BE PREF- BACKFILL BEACKFILL SCREEDING SCREEDING BACKFILL AND SPRACTICABLE SCREEDING SCREEDING BACKFILL SCREEDING BACKFILL SCREEDING SCREEDING BACKFILL NOT THAN ON A BACKFILL SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. PREPARATION. SCREEDING BACKFILL B | | _ | ROCK EXCAVATION | | | | EXCAVATION CAN | | ING A BLASTING; RIPPINC LINE REPARATION FOR CLAMSHELLING IS PRACTICABLE. SOIL BACKFILL BACKFILL BACKFILL BACKFILL BACKFILL BACKFILL SCREEDING SCREEDING SCREEDING SCREEDING ING A BLASTING; RIPPINC LINE DRILLING; JACK-HAMMERING, CLAMSHELLING IS PRACTICABLE. WORK INTO STAGES WITH RAPID DEPLOYMENT AND DEPLOYMEN | OR DREDGING | | | | | | | | RIPPING; LINE DRILLING; JACK- HAMMERING, CLAMSHELLING; ETC. ALSO ABLITY TO DEPLOY & ALLOW TRAFFIC TO VITHDRAW RAPIDLY. SOIL MODIFICATION BACKFILL USE OF BACKFILL SCREEDING BACKFILL SCREEDING S | | | | | | | | | DRILLING; JACK- HAMMERING, CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; CLAMSHELLING; DEPLOYMENT AND WITHDRAWAL TO ALLOW TRAFFIC TO WITHDRAW PASS. SOIL WITHDRAW PASS. SOIL GROUTING OR BY- PASSING PACTICABLE. SOIL GROUTING OR BY- PASSING PACTICABLE. SPRACTICABLE. SPRACTICABLE. USE OF FRACTICABLE. BACKFILL BACKFILLING OVER PROPER AND MINIMIZE SURFACE PEARATION FOR FOUNDATIONS. MINIMIZE SURFACE PREPARATION OF FROUNDATIONS. SCREEDING BACKFILL ON TOO OF OF OF OCK CAN MINIMIZE SURFACE PREPARATION. SCREEDING PREPARATION. SCREEDING BACKFILL NO TOO OF OF OF OCK CAN MINIMIZE SURFACE PREPARATION. SCREEDING PREPARATION. SCREED SCOUR PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION OF PROTECTION OF PROTECTION PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION PROTECTION PROTECTION OF PROTECTION PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION PREPARATION. TEMPORARY
SCOUR PROTECTION PROTECTION PREPARATION. TEMPORARY SCOUR PROTECTION PREPARATION PROTECTION PREPARATION. TEMPORARY SCOUR PROTECTION PREPARATION. TEMPORARY PROTECTION PROTECTION PROTECTION PREPARATION. TEMPORARY SECURED. TEMPORARY SECURED. TEMPORARY SECURED. TO RECOVER TO THEM WITH ACUTTER. WITH A CUTTER. BACKFILL ON TOO DESCRIPTION SUCH AS SOCIATED WITH ACUTTER. WITHORAW PRACTICABLE. SCIED SCOUR STONE CAN BE CASE ON STILL CAN BE USED. SCIED SCOUR STONE CAN BE USED. SCHEED SYSTEMS, ETC. THE SCOUR STONE COST AND INSTRUCTION SEQUENCES SCHEDULE MUST BE CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION SEQUENCES SCHEDULE MUST BE CONSTRUCTION CONSTRUCTION CAN BE USED. SCHEDULE MUST BE CONSTRUCTION SECRED AND INTERMEDIATE INFLUENCE ON CONSTRUCTION CAN BE USED. SCHEDULE MUST BE COMMENDATED TO THE METAL CAN BE USED. SCHEDULE MUST BE CONSTRUCTION CONSTRUCTION CAN BE USED. SCHEDULE MUST BE CONSTRUCTION CONSTRUCTION CAN BE USED. SCHEDULE MUST BE CONSTRUCTION CAN BE USED. SCHEDULE MUST BE CONSTRUCTION CAN BE USED. SCHEDULE MUST BE CONSTRUCTION CAN BE USED | | | | | | | | | HAMMERING, CLAMSHELLING; ETC. ALSO ABILITY TO DEPLOY & WITH BRAWL TO ALLOW TRAFFIC TO WITHDRAW RAPIDLY. SOIL MODIFICATION BACKFILL BACKFILL SCREEDING SCR | | | | | | | MATERIAL. | | CLAMSHELLING; ETC. ALSO ABILITY TO DEPLOY & WITHDRAW RAPIDLY. SOIL MODIFICATION BACKFILL BAC | | * | | PRACTICABLE. | | | | | ETC. ALSO ABILITY TO DEPLOY & WITHDRAW ALTO ALLOW TRAFFIC TO WITHDRAW PASS. ALLOW TRAFFIC TO PASS. SOIL. MODIFICATION BACKFILL BACKFILL BACKFILL BACKFILL BACKFILL SCREEDING MATERIAL COST AND MINIMIZE SURFACE PREPARATION. SCREEDING SCREEDING MATERIAL COST AND MINIMIZE SURFACE PREPARATION. SCREEDING SCREEDING SCREEDING MATERIAL SCREEDING SCREEDING MATERIAL SCREEDING SCREEDING MATERIAL SCREEDING MATERIAL SCREEDING SCREEDING MATERIAL SCREEDING MATERIAL SCREEDING MATERIAL SCREEDING MATERIAL SCREEDING AND INTERMEDIATE SCREEDING AND INTERMEDIATE SCREEDING SCREEDING MATERIAL SCREEDING AND INTERMEDIATE SCREEDING SCREEDING MATERIAL SCREEDING AND INTERMEDIATE SCREEDING SCREEDING MATERIAL SCREEDING MATERIAL COST AND MINIMIZE SURFACE PREPARATION COHON AND INTERMEDIATE SCREEDING MATERIAL SCREEDING MATERIAL COST AND MINIMIZE SCREEDING | | , | | | | | | | TO DEPLOY & WITHDRAW RAPIDLY. SOIL GROUTING OR BY-PASSING PRACTICABLE SOIL ON FRACTURED ZONES IS PRACTICABLE. BACKFILL BACKFILL USE OF BACKFILING OVER PREFERABLE TO FOUND DIRECTLY MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING TYMAY BE PREFERABLE TO FOUNDATIONS. BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. BACKFILL SCREEDING TI MAY BE PREFERABLE TO FOUNDATIONS. BACKFILL MATERIAL. SCREEDING TI MAY BE PREFERABLE TO FOUND SUCH AS: DRAG BEAM, MINIMIZE SURFACE PREPARATION. BACKFILL SCREEDING TO MAY BE PREFERABLE TO FOUNDATIONS. BACKFILL MATERIAL. SCREEDING TO MAY BE PREFERABLE TO FOUND SUCH AS: DRAG BEAM, MINIMIZE SURFACE PREPARATION. BACKFILL MATERIAL. SCREEDING TEMPORARY SCOUR PROTECTION TYPICALLY NOT REQUIRED. TYPICALLY NOT REQUIRED. TYPICALLY NOT REQUIRED. TYPICALLY NOT REQUIRED. ALLOW TRAFFIC TO PROCEDING IS PRACTICABLE SUBRO-DENSIFICATION EXPENSE AND MINIMIZE SURFACE PREPARATION. BACKFILL ASSOCIATED WITH MODIFICATION. MODIFICATION OVER COHESIVE MATERIAL CAN BE USED ALSO FOR: DRACTICABLE SCREED AND MIXING, JET- MODIFICATION MODIFICATION MODIFICATION MODIFICATION MATERIAL ASSOCIATED MIXING, JET- MODIFICATION MODIFICATION MIXING, JET- MODIFICATION MIXING, JET- MIXING, OR M | | | | | | | | | SOIL GROUTING OR BY-MODIFICATION PASSING FRACTURED ZONES IS PRACTICABLE. BACKFILL BACKFILL USE OF BACKFILLING OVER PEPERABLE TO FOUND DIRECTLY ON ROCK CAN BACKFILL MATERIAL. SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. BACKFILL SCREEDING AND INTERMEDIATE | | | | | OPEN. | | | | RAPIDLY. GROUTING OR BY-PACTICABLE FRACTURED ZONES IS PRACTICABLE. BACKFILL BACKFILL USE OF BACKFILLING OVER PREPERBALE TO PREPARATION FOR FOUNDATIONS. BACKFILL BACKFIL | | | | | | | | | SOIL MODIFICATION PASSING PASSING IS PRACTUCABLE. BACKFILL USE OF BACKFILLING OVER PREFERABLE TO FOUND DIRECTLY MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. SCREEDING BACKFILL MAY BE PREF-BABLE TO FOUND DIRECTLY ON ROCK ATHER THAN ON A BACKFILL ON TOP OF FRAME. FLOATING SCREED SYSTEMS, AUGER SYSTEMS, AUGER SYSTEMS, ETC. TEMPORARY SCOUR PROTECTION TYPICALLY NOT REQUIRED. THIS WORK CAN BE USED. VIBRO-DENSIFICATION IN BACKFILL ASSOCIATED WITH ASSOCIATED WITH ASSOCIATED WITH ASSOCIATED WITH MODIFICATION. SCREED ASSOCIATED WITH MODIFICATION. SEQUENCE-SCHEDULE MUST SEXPENSE AND TIME EXPENSE AND TIME EXPENSE AND TIME ASSOCIATED WITH ASSOCIATED WITH MODIFICATION. ASSOCIATED WITH MODIFICATION. SEQUENCE-SCHEDULE MUST SOLE AS: SOIL | | | 17100. | | | | | | MODIFICATION FRACTURED ZONES IS PRACTICABLE. BACKFILL | SOIL | | THIS WORK CAN BE | VIBRO-DENSIFICATION | EXPENSE AND | | EXPENSE TIME | | FRACTURED ZONES IS PRACTICABLE. BACKFILL USE OF BACKFILLING OVER ROCK CAN MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING SCREEDING SCREEDING SCREEDING SCREEDING TI MAY BE PREF-BABLE TO FOUND DIRECTLY OF ROCK CAN MINIMIZE SURFACE PREPARATION. MINIMIZE SURFACE PREPARATION MATERIAL. SCREEDING SCREEDING SCREEDING SCREEDING TI MAY BE PREF-BABLE TO FOUND DIRECTLY ON ROCK RATHER DAINAGE LAYERS, AND SCREED LAYERS. FILTER LAYERS, AND SCREED LAYERS. FILTER LAYERS, AND SCREEDING CAN MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING SCREEDING SCREEDING SCREEDING ASSOCIATED WITH MODIFICATION. CARE MUST BE OVER COHESIVE ASSOCIATED WITH AS | | | | | | | | | BACKFILL USE OF BACKFILLING OVER ROCK CAN ROCK CAN MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING | | | | | ASSOCIATED | | | | BACKFILL USE OF BACKFILLING OVER ROCK CAN MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING ASSOCIATED WITH BACKFILL NOTOP OF COHESIVE COHESIVE MATERIAL CAN MINIMIZE SURFACE PREPARATION. SCREEDING ASSOCIATED WITH BACKFILL NOTOP OF COHESIVE ASSOCIATED WITH BACKFILL NOTOP OF COHESIVE SCREEDING SCREEDING ASSOCIATED WITH BACKFILL NOTOP OF COHESIVE ASSOCIATED WITH BACKFILL NOTOP OF COHESIVE ASSOCIATED WITH BACKFILL ACTION EITHER WITHIN OR MINIMIZE SURFACE FREPARATION FOR ACTION MINIMIZE SURFACE FOUNDATION ACTION MINIMIZE SURFACE ON ON OR OR OR ASSOCIATED W | | IS PRACTICABLE. | RESULTS. | | WITH | GROUTING, ETC. | MODIFICATION. | | BACKFILLING OVER ROCK CAN ROCK CAN MINIMIZE SURFACE PREPARATION. SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION PROPER PROPE PROPER PROPE PROPER PROPE PROPER | | | | | MODIFICATION. | | | | ROCK CAN MINIMIZE SURFACE PREPARATION FOR FOUND DIRECTLY ON ROCK RATHER THAN ON A BACKFILL MATERIAL. SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. MATERIAL. MULTIPLE OPTIONS SUCH AS: DRAG BEAM, DIRECTLY ON ROCK MINIMIZE SURFACE PREPARATION. BACKFILL ON TOP OF ASSOCIATED WITH BACKFILL ON TOP OF SCREED SYSTEMS, AUGER SYSTEMS, ETC. TEMPORARY SCOUR PROTECTION TEMPORARY SCOUR PROTECTION REQUIRED. TEMPORARY SCOUR PROTECTION TYPICALLY NOT REQUIRED. READ TYPICALLY NOT READ TYPICALLY NOT READ TYPICALY NOT READ TYPICALLY NOT READ TYPICALLY NOT READ TYPICALY NOT READ TYPICALLY NOT READ T | BACKFILL | | | | | | | | MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING SCREEDING SCREEDING BACKFILL MATERIAL. MINIMIZE SURFACE PREPARATION FOR FOUNDATIONS. SCREEDING BACKFILL MATERIAL. SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION FOR BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. MINIMIZE SURFACE PREPARATION. MINIMIZE SURFACE PREPARATION. MORE PRECISE SCREEDING CAN SIGNIFICANTLY INCREASE COSTS. MATERIAL CAN MINIMIZE SURFACE PREPARATION. TYPICALLY NOT REQUIRED. TYPICALLY NOT REQUIRED. TYPICALLY NOT REQUIRED. AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. DRAINAGE LAYERS, AND SCREED LAYERS. MULTIPLE OPTIONS SUCH AS: DRAG BEAM, SCREEDING CAN SIGNIFICANTLY INCREASE COSTS. MATERIAL CAN MINIMIZE SURFACE PREPARATION. EXPENSE AND TIME BACKFILL ON TOP OF ASSOCIATED WITH BACKFILL, AND SCREEDING. SCREEDING. EXPENSE AND TIME COHESIVE MATERIAL CAN MINIMIZE SURFACE PREPARATION. COST AND INFLUENCE ON CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CAN BE USED. SEQUENCE- SCHEDULE MUST BE | | | | | | | | | PREPARATION FOR FOUNDATIONS. PREPARATION FOR FOUNDATIONS. SCREEDING SCREEDING SCREEDING BACKFILL MATERIAL. SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. PREPARATION. BACKFILL COHESIVE BACKFILL BACKFILL COHESIVE BACKFILL BACKFILL COHESIVE BACKFILL BACKFILL COHESIVE BACKFILL COHESIVE BACKFILL COHESIVE | | | | | | | BACKFILL. | | FOUNDATIONS. BACKFILL MATERIAL. SCREED LAYERS. WITHIN OR AROUND THE BACKFILL. WITHIN OR AROUND THE BACKFILL. SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. BACKFILL | | | | | | | | | SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. BACKFILL BACKFI | | | | | | | | | SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION IT MAY BE PREF- ERABLE TO FOUND DIRECTLY ON ROCK RATHER THAN ON A BACKFILL SCREED SYSTEMS, AUGER SYSTEMS, AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. BACKFILL MULTIPLE OPTIONS SUCH AS: DRAG BEAM, SCREEDING CAN SIGNIFICANTLY INCREASE COSTS. MATERIAL CAN MINIMIZE SURFACE PREPARATION. BACKFILL MATERIAL AUGER SYSTEMS, ETC. TYPICALLY NOT REQUIRED. AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. CAN BE USED. SCREEDING. SCREEDING BACKFILL ON TOP OF BACKFILL ON TOP OF COHESIVE MATERIAL CAN MINIMIZE
SURFACE PREPARATION. COHESIVE MATERIAL CAN MINIMIZE SURFACE PREPARATION. COST AND ARTICULATED MATS COST AND INFLUENCE ON SIZED SCOUR STONE CONSTRUCTION SIZED SCOUR STONE CAN BE USED. SCHEDULE MUST BE | | FOUNDATIONS. | _ | SCREED LAYERS. | | FOUNDATIONS. | | | SCREEDING SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION SCREEDING BACKFILL ON TOP OF ROCK CAN MINIMIZE SURFACE PREPARATION. TYPICALLY NOT REQUIRED. REQUIRED. TYPICALLY NOT REQUIRED. REQUIRED. SCREEDINS BACKFILL ON TOP OF ASSOCIATED WITH BACKFILL, AND SCREED SYSTEMS, AUGER SYSTEMS, ETC. AND INTERMEDIATE SIGNIFICANTLY INCREASE COSTS. SIGNIFICA | | | WATEKIAL. | | | | | | BACKFILL ON TOP OF ROCK CAN OF ROCK CAN DIRECTLY ON ROCK RATHER THAN ON A PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION BACKFILL ON TOP OF ROCK CAN DIRECTLY ON ROCK RATHER THAN ON A PROTECTION BACKFILL ON TOP OF ROCK ASSOCIATED WITH BACKFILL, AND SIGNIFICANTLY INCREASE COSTS. AUGER SYSTEMS, AUGER SYSTEMS, AUGER SYSTEMS, AUGER SYSTEMS, AUGER SYSTEMS, AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. BACKFILL ON TOP OF ASSOCIATED WITH BACKFILL, AND SIGNIFICANTLY INCREASE COSTS. MATERIAL CAN MINIMIZE SURFACE PREPARATION. COST AND ARTICULATED MATS AND INTERMEDIATE SIZED SCOUR STONE CONSTRUCTION SIZED SCOUR STONE CAN BE USED. SEQUENCE-SCHEDULE MUST SCHEDULE MUST SCHEDULE MUST SCHEDULE MUST BE | SCREEDING | SCREEDING | IT MAY BE PREE- | MULTIPLE OPTIONS | | SCREEDING | EXPENSE AND TIME | | OF ROCK CAN MINIMIZE SURFACE RATHER THAN ON A PREPARATION. TEMPORARY SCOUR PROTECTION PROTECTION OF ROCK CAN MINIMIZE SURFACE RATHER THAN ON A BACKFILL SCREED SYSTEMS, AUGER SYSTEMS, AUGER SYSTEMS, AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. OF ROCK CAN MINIMIZE SURFACE PREPARATION. SCREED SYSTEMS, AUGER SYSTEMS, ETC. AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. SIGNIFICANTLY INCREASE COSTS. MATERIAL CAN MINIMIZE SURFACE PREPARATION. COST AND ARTICULATED MATS COST AND INTERMEDIATE SIZED SCOUR STONE CONSTRUCTION SIZED SCOUR STONE SIZED SCOUR STONE SEQUENCE-SCHEDULE MUST SCHEDULE MUST BE | SCREEDING | | | | | | | | MINIMIZE SURFACE RATHER THAN ON A FRAME, FLOATING SCREED SYSTEMS, AUGER SYSTEMS, ETC. TEMPORARY SCOUR REQUIRED. REQUIRED. REQUIRED. SIZED SCOUR STONE CAN BE USED. SCHEDULE MUST TO SCOUR SEQUENCE-SCHEDULE MUST REQUIRED. REQUIRED. SCREEDING. MATERIAL CAN MINIMIZE SURFACE PREPARATION. COST AND ARTICULATED MATS COST AND INTERMEDIATE INFLUENCE ON AND INTERMEDIATE INFLUENCE ON SIZED SCOUR STONE CONSTRUCTION SIZED SCOUR STONE CAN BE USED. SEQUENCE-SCHEDULE MUST BE | | | | | | | | | TEMPORARY TYPICALLY NOT REQUIRED. REQUIRED. REQUIRED. SIZED SCOUR STONE CAN BE USED. SCHEDULE MUST S | | | | | | | | | TEMPORARY SCOUR REQUIRED. TYPICALLY NOT REQUIRED. ARTICULATED MATS AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. SCHEDULE MUST | | PREPARATION. | BACKFILL | SCREED SYSTEMS, | | MINIMIZE SURFACE | | | REQUIRED. REQUIRED. AND INTERMEDIATE SIZED SCOUR STONE CAN BE USED. SCHEDULE MUST SCHE | | | MATERIAL. | AUGER SYSTEMS, ETC. | | PREPARATION. | | | PROTECTION SIZED SCOUR STONE CAN BE USED. SEQUENCE- SCHEDULE MUST SCHEDULE MUST SIZED SCOUR STONE CONSTRUCTION SEQUENCE- SCHEDULE MUST SCHEDULE MUST BE | TEMPORARY | TYPICALLY NOT | TYPICALLY NOT | ARTICULATED MATS | COST AND | ARTICULATED MATS | COST AND | | CAN BE USED. SEQUENCE-SCHEDULE MUST CAN BE USED. SEQUENCE-SCHEDULE MUST BE | | REQUIRED. | REQUIRED. | | | | | | SCHEDULE MUST SCHEDULE MUST BE | | | | | | | | | | PROTECTION | | | CAN BE LISED | SEOUENCE- | CAN BE USED. | SEOUENCE- | | BE CONSIDERED. CONSIDERED. | PROTECTION | | | CAN DE USED. | | | | | | PROTECTION | | | CAN BE USED. | SCHEDULE MUST | | SCHEDULE MUST BE | | MATRIX E-4 (CO | NCLUDED) | | | | | | |----------------------------------|---|---|---|---|---|---| | | ROCK FO | UNDATION | SAND FOU | NDATION | COHESIVE MATERIA | AL FOUNDATION | | ITEM | POTENTIAL SOLUTIONS | POTENTIAL
PROBLEMS | POTENTIAL
SOLUTIONS | POTENTIAL
PROBLEMS | POTENTIAL
SOLUTIONS | POTENTIAL
PROBLEMS | | PERMANENT
SCOUR
PROTECTION | TYPICALLY NOT REQUIRED. | TYPICALLY NOT
REQUIRED. | TECHNOLOGY EXISTS TO SURVEY THE STONE LAYER UNDERWATER THUS POTENTIALLY ALLOWING FOR USE OF THINNER LAYERS. | STONE LAYERS PLACED UNDERWATER MUST BE THICKER THAN WHEN PLACED IN-THE- DRY. | TECHNOLOGY EXISTS TO SURVEY THE STONE LAYER UNDERWATER THUS POTENTIALLY ALLOWING FOR USE OF THINNER LAYERS. | STONE LAYERS PLACED UNDERWATER MUST BE THICKER THAN WHEN PLACED IN-THE-DRY. | | SEDIMENT
CONTROL | MAY OR MAY NOT,
BE REQUIRED. | MAY OR MAY NOT,
BE REQUIRED. | SHEET-PILE WALLS
AND SEDIMENT TRAP
TRENCHES CAN BE
EFFECTIVE. | SAND WAVES, AND
RUNNING SANDS
MAY REQUIRE
EXTRA MEASURES. | SHEET-PILE WALLS
AND SEDIMENT TRAP
TRENCHES CAN BE
EFFECTIVE. | MIGRATING MUD
CAN BE
DIFFICULT TO
CONTROL. | | FOUNDATION | FOUNDING
DIRECTLY ON ROCK
CAN BE COST
EFFECTIVE. | WEAK LAYERS AND
WEATHER ZONES
MAY REQUIRE
EXTRA MEASURES. | FRICTION AND/OR
END BEARING PILES,
OR DRILLED SHAFTS,
ARE EFFECTIVE. | PILE DRIVING MAY
OR MAY NOT BE
HARD, AND
DRILLED SHAFTS
CAN BE SLOW. | FRICTION AND/OR
END BEARING PILES,
OR DRILLED SHAFTS,
ARE EFFECTIVE. | PILE DRIVING
MAY OR MAY
NOT BE HARD,
AND DRILLED
SHAFTS CAN BE
SLOW. | | SUBSTRUCTURE | PRECAST CON-
CRETE GRAVITY
STRUCTURES, OR
STRUCTURE WITH
ROCK ANCHORS
CAN BE USED
EFFECTIVELY | IF THE SUBSTRUCTURE IS DEWATERED, CARE SHOULD BE TAKEN TO AVOID LIFT-OFF FROM THE ROCK. | TIE-IN OF
SUBSTRUCTURE TO
PILES/SHAFTS CAN BE
ACCOMPLISHED WITH
TREMIE CONCRETE OR
GROUT. | THE QUALITY OF THE FOUNDATION- SUBSTRUCTURE CONNECTION MAY REQUIRE VERIFICATION UNDERWATER. | TIE-IN OF
SUBSTRUCTURE TO
PILES/SHAFTS CAN BE
ACCOMPLISHED WITH
TREMIE CONCRETE
OR GROUT. | THE QUALITY OF THE FOUNDATION-SUBSTRUCTURE CONNECTION MAY REQUIRE VERIFICATION UNDERWATER. | | DISPOSAL
ISSUES | EXCAVATED ROCK
CAN SOMETIMES BE
DISPOSED OF AS
BACKFILL. | DISPOSAL OF
EXCAVATED ROCK
MAY REQUIRE
PROCESSING. | DREDGED SAND CAN
SOMETIMES BE
DISPOSED OF AS
BACKFILL. | ON-SHORE
DISPOSAL MAY BE
REQUIRED. | DREDGED COHESIVE
MATERIAL CAN
SOMETIMES BE
DISPOSED OF AS
BACKFILL. | ON-SHORE
DISPOSAL MAY
BE REQUIRED. | | ENVIRONMENT
ISSUES | ROCK EXCAVATION
HAS REDUCED RISK
OF INTRODUCING
FINES INTO THE
WATER COLUMN. | DRILLING AND
BLASTING CAN
CAUSE SHOCK
WAVES. | DREDGING OF CLEAN
SANDS AND GRAVEL
MAY POSE LITTLE
RISK TO THE
ENVIRONMENT. | RESTRICTIONS MAY BE PLACED ON DREDGING, TO AVOID THE INTRODUCTION OF FINES INTO THE WATER COLUMN. | EXCAVATION OF
STIFF COHESIVE
MATERIAL MAY POSE
LITTLE RISK TO THE
ENVIRONMENT. | RESTRICTIONS MAY BE PLACED ON DREDGING, TO AVOID THE INTRODUCTION OF FINES INTO THE WATER COLUMN. | | | GUIDAN | ICE SYSTEMS | STATION KEE | PING SYSTEMS | STA | ABILITY | |-------------------------|---|--|--|---|---|---| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | STABBING
SYSTEMS | WIDELY USED. SIMPLE. COST EFFECTIVE. RELIABLE. FREQUENTLY TAPERED AND/OR STEPPED. CAN GUIDE IN ONE OR TWO DIRECTIONS. | STATIC SYSTEM, WITH A POTENTIAL FOR "HANGING-UP" THE OBJECT BEING INSTALLED. | PRE-INSTALLED STABBING PILES HAVE BEEN USED FOR STATION KEEPING IMMEDIATELY BEFORE SET-DOWN | SELDOMLY USED FOR
STATION KEEPING,
EXCEPT
IMMEDIATELY
BEFORE
INSTALLATION. | COULD BE COMBINED WITH TAUT LINES FOR INSTALLATION STABILITY. | NOT NORMALLY | | JACKING
SYSTEMS | DYNAMIC GUIDANCE SYSTEM THAT CAN BE USED TO EQUALIZE FORCES. | REQUIRES A CONTROL SYSTEM, AND IS MORE EXPENSIVE THAN STATIC SYSTEMS. | SPOTTER JACKS CAN
BE USED FOR
ADJUSTABLE STATION
KEEPING WITH
ADEQUATE REACTION
POINTS. | HAS LIMITED TRAVEL. | SPOTTER JACKS
CAN BE USED TO
AID STABILITY. | NOT NORMALLY
USED FOR
STABILITY. | | MULTI-STEPPED
GUIDES | HIGHLY EFFECTIVE METHOD TO GRADUALLY GUIDE LARGE OBJECTS INTO POSITION. | REQUIRES CAREFUL
PRE-POSITIONING
AND TOLERANCE
CONTROL. | CAN BE USED FOR
STATION KEEPING
IMMEDIATELY
BEFORE SET-DOWN. | SELDOMLY USED FOR
STATION KEEPING,
EXCEPT
IMMEDIATELY
BEFORE
INSTALLATION. | COULD BE USED IN COMBINA-
TION WITH OTHER SYSTEMS FOR STABILITY. | NOT NORMALLY
USED FOR
STABILITY. | | MOORING-LINE
SYSTEMS | CAN BE USED
FOR GUIDANCE
FOR OBJECT
NOT REQUIRING
TIGHT
TOLERANCES. | POOR TOLERANCE
CONTROL COMPARED
TO OTHER GUIDANCE
SYSTEMS. | | MOORING LINES MAY
NOT BE TAUT. | MOORING LINE CAN BE USED TO MAINTAIN STABILITY DURING INSTALLATION BUT MUST BE CHECKED FOR ADEQUATE CAPACITY. | NORMALLY ONLY
USED TO
SUPPLEMENT
OTHER MEANS
OF
MAINTAINING
STABILITY. | | MATRIX E-5 | (CONCLUDED) | | | | | | |------------------------------|---|--|---|--|--|---| | | GUIDANCE | SYSTEMS | STATION KEI | EPING SYSTEMS | STA | ABILITY | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | SPUD-PILES
AND DOLPHINS | COMMON, EFFECTIVE,
AND ECONOMICAL
METHODS FOR
PROVIDING
GUIDANCE. | USE OF SPUD-PILES ARE DEPENDENT ON THE EQUIPMENT USED, WHILE DOLPHINS REQUIRE PREPLANNING AND EXPENSE. | COMMONLY USED FOR STATION KEEPING. CAN BE COST EFFECTIVE AND EFFICIENT DEPENDING ON LOGISTICS. | DOLPHINS CAN PRESENT OBSTRUC- TIONS, AND SPUD- PILES CAN DISRUPT RIVER BOTTOM. | SPUD-PILES AND DOLPHINS CAN BE USED TO INCREASE STABILITY DURING INSTALLATION. | CAPACITY CHECKS MUST BE MADE, AND THE EXPENSE MAY BE HIGH COM- PARED TO OTHER MEANS OF PROVID- ING STABILITY. | | VERTICAL
TENSION
LINES | CAN BE USED TO
GUIDE OBJECTS INTO
PLACE IN ONE, OR
TWO DIRECTIONS. | THE LINES CAN GET
IN THE WAY, AND
THEY REQUIRE
REACTION POINTS. | CAN BE USED FOR
STATION KEEPING
AND CAN PROVIDE
GREATER
TOLERANCE
CONTROL THAN
MOORING-LINES. | MORE EXPENSIVE
AND REQUIRE MORE
PLANNING THAN
MOORING-LINES. | CAN BE USED TO PROVIDE STABILITY AND CAN BE USED TO PULL DOWN OBJECTS. | CAN BE MORE EXPENSIVE AND REQUIRE MORE PLANNING THAN OTHER MEANS OF PROVIDING STABILITY. | | TUG/HELPER
BOATS | CAN BE USED FOR
GUIDANCE IF OTHER
MEANS ARE NOT
PRACTICABLE. | LESS RELIABLE THAN OTHER GUID- ANCE METHODS AND DEPENDENT ON OPERATOR SKILL. | COMMONLY USED
FOR STATION
KEEPING. READILY
AVAILABLE AND
COST EFFECTIVE. | LESS RELIABLE THAN OTHER METHODS OF STATION KEEPING AND DEPENDENT ON OPERATOR SKILL. | CAN BE
ATTENDED IF NO
OTHER MEANS
ARE AVAILABLE. | NOT NORMALLY
USED TO PROVIDE
STABILITY. | | DIFFERENTIAL
BALLASTING | CAN BE USED FOR
POSITIONING
ADJUSTMENT PRIOR
TO INSTALLATION. | NOT NORMALLY
CONSIDERED AS A
GUIDANCE SYSTEM. | BALLASTING-DOWN
USED IN SEMI-
SUBMERSIBLES TO
REDUCE EXPOSURE
TO WAVES. | NOT NORMALLY USED
FOR STATION
KEEPING AGAINST
CURRENTS. | COMMONLY
USED TO MAIN-
TAIN STABILITY.
COST EFFECTIVE
AND EFFICIENT. | EXPENSE OF
BALLASTING
SYSTEM, AND
PREPLANNING
REQUIRED. | | DYNAMIC
FEEDBACK | CAN BE USED FOR POSITIONING CONTROL. | EXPENSIVE COM-
PARED TO OTHER
GUIDANCE SYSTEMS. | CAN BE USED FOR STATION KEEPING. | GENERALLY EXPENSIVE COMPARED TO OTHER MEANS. | CAN BE USED TO IMPROVE STABILITY. | GENERALLY EXPENSIVE COMPARED TO OTHER MEANS. | | REFERENCE
FRAMES | WIDELY USED. VERSATILE. EFFECTIVE. CAN BE COST EFFICIENT IF REUSED SUFFICIENTLY. | MAY BE EXPENSIVE
UNLESS RE-USED
SUFFICIENTLY.
REQUIRES PRE-
PLANNING. | CAN BE USED AS
REACTION FRAMES
TOGETHER WITH
LINES AND/OR
JACKS. | OTHER MEANS MAY
BE MORE COST
EFFECTIVE. | CAN BE USED AS EFFECTIVE REACTION FRAMES FOR MAINTAINING STABILITY. | MAY BE MORE
EXPENSIVE THAN
OTHER MEANS OF
PROVIDING
STABILITY. | | UNDER-
PRESSURE | CAN BE USED TO
MOVE OBJECTS
LATERALLY (E.G.,
IMMERSED TUBES) OR
DOWNWARD (E.G.
SUCTION ANCHORS/
SKIRTS) | LIMITED APPLICATION. | CAN BE USED WITH SUCTION ANCHORS. | LIMITED APPLICATION. | COULD BE USED
TOGETHER WITH
OTHER
SYSTEMS. | NOT NORMALLY
USED TO MAINTAIN
STABILITY. | | | FOUNI | DATION | STRUC | CTURAL | OPER | ATIONAL | |--|--|--|--|--|---|--| | ITEM | FLOAT-IN | LIFT-IN | FLOAT-IN | LIFT-IN | FLOAT-IN | LIFT-IN | | USING TREMIE
CONCRETE | USE OF BASE SLAB
REQUIRES EITHER
GROUT OR A THICK
TREMIE UNDER-
BASE PLACEMENT | LACK OF BASE SLAB
SIMPLIFIES TREMIE
CONNECTION | USE OF SIDEWALLS
ON FLOAT-IN UNITS
MAY COMPLICATE
TREMIE CONCRETE
CONNECTIONS
WHICH MAY
REQUIRE GROUT. | LACK OF PRECAST
SHELL WALL
BETWEEN PRE-
VIOUSLY PLACED
AND NEW SHELL
SIMPLIFIES
CONNECTION | LARGER UNITS
HAVE FEWER
CONSTRUCTION
JOINTS. | MULTIPLE LIFT-IN UNIT CAN LEAD TO OPTIMIZATION OF EQUIPMENT AND PROCEDURES RESULT ING IN FEWER FLAWS. | | USING GROUT | TYPICALLY USED
BENEATH BASE
SLAB. | NOT COMMONLY
USED. | COMMONLY USED. | MAY BE USED. | LARGE AREAS FOR
GROUTING MAY
REQUIRE SPECIAL
PROCEDURES AND
MAY REQUIRE AN
EXTENDED
PERIOD OF TIME
TO INSTALL. | MULTIPLE LIFT-IN UNITS PRESENT OPPORTUNITY TO OPTIMIZE ANY USE OF GROUT OVER SMALLER AREAS. | | GRAVITY
CONNECTIONS | USE SELF- PENETRATING BOTTOMS THAT CAN PASS THROUGH SOFT FOUNDATIONS TO REACH SOUND LAYER. | EXCAVATING THOUGH OPEN BOTTOMED SHELLS CAN SINK THEM DOWN TO SOUND FOUNDING LAYER. | NOT COMMONLY
USED. | NOT COMMONLY
USED. | NOT COMMONLY
USED. | NOT COMMONLY
USED. | | CONNECTIONS
TO FLOATING
STRUCTURES | CONNECTION TO
FLOATING
APPROACH WALLS
MAY REQUIRE
DRILLED SHAFTS. | CONNECTION TO
FLOATING
APPROACH WALLS
MAY REQUIRE
DRILLED SHAFTS. | CONNECTION TO FLOATING APPROACH WALLS MAY REQUIRE THE USE OF SHEAR KEYS ON THE STRUCTURE. | CONNECTION TO
FLOATING
APPROACH WALLS
MAY REQUIRE THE
USE OF SHEAR KEYS
ON THE STRUCTURE. | MAINTAINING VERTICAL ALIGN- MENT OF MULTI- PLE CONNECTIONS MAY REQUIRE THE USE OF SECOND- ARY, GROUTED, JACKETS. | MAINTAINING VERTICAL ALIGN- MENT OF MULTIPLE CONNECTIONS MAY REQUIRE THE USE OF SECONDARY, GROUTED, JACKETS. | | CONNECTIONS
AT EXPANSION
JOINTS | NOT COMMONLY
USED. | NOT COMMONLY
USED. | REQUIRES SOME
EXTRA DETAILING
AND INSTALLING
SEQUENCING. | USE OF SHEAR KEYS,
BETWEEN MONO-
LITHS IS SIMPLIFIED
BY USE OF TREMIE
CONCRETE
CONNECTION. | MAY REQUIRE THAT USE OF COMPRESSION SEALS AS OPPOSED TO WATERSTOPS. | MAY REQUIRE THAT
USE OF COMPRESSION
SEALS AS OPPOSED TO
WATERSTOPS. | | MATRIX E-6 (C | ONCLUDED) | | | | | | |--|--|--|---|---|---|---| | | FOUN | NDATION | STRUC | TURAL | OPER/ | ATIONAL | | ITEM | FLOAT-IN | LIFT-IN | FLOAT-IN | LIFT-IN | FLOAT-IN | LIFT-IN | | CONNECTIONS
TO EXISTING
STRUCTURES | UNDERWATER CONNECTION TO EXISTING STRUC- TURES MAY BE FACILITATED BY THE USE OF WIRE SAW CUTTING, LINE DRILLING, OR CONTROLLED BLASTING. | SAW CUTTING, OR
CONTROLLED
BLASTING. | UNDERWATER CONNECTION TO EXISTING STRUCTURES MAY BE FACILITATED BY THE USE OF WIRE SAW CUTTING, OR CONTROLLED BLASTING. | UNDERWATER CONNECTION TO EXISTING STRUCTURES MAY BE FACILITATED BY THE USE OF WIRE SAW CUTTING, OR CONTROLLED BLASTING. | UNDERWATER CONNECTION TO EXISTING STRUCTURES MAY BE FACILI- TATED BY THE USE OF WIRE SAW CUTTING, OR CONTROLLED BLASTING. | UNDERWATER CONNECTION TO EXISTING STRUC- TURES MAY BE FACILITATED BY THE USE OF WIRE SAW CUTTING, OR CONTROLLED BLASTING. | | CONNECTIONS
AT ISOLATION
JOINTS | FLEXIBLE CUT-
OFF WALL
DETAILS ARE
REQUIRED. | FLEXIBLE CUT-OFF
WALL DETAILS ARE
REQUIRED. | TYPICALLY CONSISTS
OF A GAP WITH
FLEXIBLE FLOW
BARRIER. | TYPICALLY CONSISTS
OF A GAP WITH
FLEXIBLE FLOW
BARRIER. | ATTENTION TO
DETAILING IS
IMPORTANT. | ATTENTION TO
DETAILING IS
IMPORTANT. | | CONNECTIONS
AT CONSTRUC-
TION JOINTS | FEWER JOINTS SIMPLIFIES THE PROBLEM OF TREMIE AND GROUT CONTAIN- MENT AT JOINTS. | CONTAINMENT OF
TREMIE CONCRETE
AND GROUT AT
JOINTS REQUIRES
EXTRA DETAILING. | FEWER JOINTS SIMPLIFIES THE PROBLEM OF TREMIE AND GROUT CONTAINMENT AT JOINTS. | CONTAINMENT OF
TREMIE CONCRETE
AND GROUT AT JOINTS
REQUIRES EXTRA
DETAILING. | FEWER JOINTS SIMPLIFIES THE PROBLEM OF TREMIE AND GROUT CONTAIN- MENT AT JOINTS. | CONTAINMENT OF
TREMIE CONCRETE
AND GROUT AT
JOINTS REQUIRES
EXTRA DETAILING. | | CONNECTIONS
MADE IN THE
PREFABRICA-
TION FACILITY | PROVISIONS FOR FOUNDATION CONNECTIONS MAY REQUIRE MORE ALLOWANCE THAN FOR LIFT-IN. | PROVISIONS FOR FOUNDATION CON- NECTIONS MAY REQUIRE LESS ALLOWANCE THAN FOR FLOAT-IN. | LARGER UNITS FACILITATE MORE PREFABRICATED
CONNECTIONS. | MORE CONNECTIONS
MUST BE MADE IN
THE FIELD AS COM-
PARED TO FLOAT-IN. | FEWER CON-
STRUCTION
JOINTS
COMPARED TO
LIFT-IN. | MORE CONSTRUCTION JOINTS COMPARED TO FLOAT-IN. | | MECHANICAL
CONNECTIONS | TYPICALLY DOES
NOT APPLY. | TYPICALLY DOES
NOT APPLY. | IN SOME CASES THE
COMPLETED GATES
CAN BE CARRIED IN
WITH THE FLOAT-IN
SHELL. | SMALL GATES CAN BE PRE-INSTALLED. LARGE GATES CAN BE PREASSEMBLED AND INSTALLED SEPARATELY. | TYPICALLY FINAL
CONNECTIONS
WOULD BE MADE
IN-THE-DRY. | TYPICALLY FINAL
CONNECTIONS
WOULD BE MADE
IN-THE-DRY. | | ELECTRICAL
CONNECTIONS | FOUNDATION INSTRUMENTA- TION CAN BE DRILLED IN, WITH LEAD CON- NECTIONS MADE ABOVE WATER. | FOUNDATION INSTRUMENTATION CAN BE DRILLED IN, WITH LEAD CONNECTIONS MADE ABOVE WATER. | SLOTS AND
BLOCKOUTS CAN BE
PROVIDED AND
CONNECTIONS
TYPICALLY MADE IN-
THE-DRY. | SLOTS AND BLOCK-
OUTS CAN BE
PROVIDED AND
CONNECTIONS
TYPICALLY MADE IN-
THE-DRY. | FLOAT-IN UNITS WILL TYPICALLY HAVE FEWER CONSTRUCTION JOINTS FOR ELECTRICAL CABLES TO PASS. | LIFT-IN UNITS WILL
TYPICALLY HAVE
MORE
CONSTRUCTION
JOINTS FOR
ELECTRICAL
CABLES TO PASS. | | | ORESUND IMMERSED TUBE | | BRA | DDOCK DAM | OL | MSTED DAM | |-------------------------------|-----------------------------|----------------------------|-------------------------------|-----------|-------------------------------|-----------| | ITEM | SPECIFIED | ACHIEVED | SPECIFIED | ACHIEVED | SPECIFIED | ACHIEVED | | PILE
POSITIONING | N. A. | N.A. | HORIZ. +/- 2" VERT. +/- 1/2" | | HORIZ. +/- 3" VERT. +/- 2" | | | SCREEDING | +/- 2" | +/- 1" | +/- 3" | | +/- 4" | | | EXCAVATION | +/- 20" | +/- 20" | +/- 12" | | +/- 12" | | | WATER CUT-OFF
SYSTEM | N.A. | N.A. | HORIZ. +/- 6" VERT. +/- 6" | | HORIZ. +/- 3" VERT. +/- 2" | | | SCOUR
PROTECTION | +/- 10" | +/- 10" | N.A. | | N. A. | | | WEIGHT
GROWTH | +/- 2.75% | +/- 2.75% | +/- 3% | | +/- 5% | | | ALLOWABLE
CURRENTS | 3 FT/SEC | 3 FT/SEC | 3 FT/SEC | | 6 FT/SEC | | | POSITIONING:
PRECAST UNITS | HORIZ. +/- 4" VERT. +/- 2" | HORIZ. +/- 4" VERT. +/- 2" | HORIZ. +/- 2" VERT. +/- 1/4" | | HORIZ. +/- 1" VERT. +/- 1/2" | | | | FLOAT | -IN OPTION | HEAVY-LIF | T OPTION | LIGHT-LI | FT OPTION | |--|---|--|--|---|--|--| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | SAFETY | FEWER OPERA-
TIONS. FASTER
INSTALLATION. | RISK OF LOSING
LARGE UNIT.
ATTRACTS LARGE
HYDRAULIC FORCES. | CONTROL OFFERED
BY CERTIFIED CRANE
BARGE WITH FEWER
LIFTS. | MORE DIVER
OPERATIONS THAN
FLOAT-IN. | HANDLING OF
SMALLER UNITS
AND WORKER
FAMILIARITY WITH
EQUIPMENT. | MORE NUMEROUS
OPERATIONS WITH
MORE TIME SPENT
IN THE RIVER. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | IMPACT ON
NAVIGATION | LEAST TIME
SPENT IN THE
RIVER WITH
LEAST EXPOSURE
TIME TO IMPACT. | RISK OF IMPACT
DURING: 1. TOW, 2.
STORAGE, 3. INSTAL-
LATION. FOR BOTH
MOORING LINES AND
LARGE UNITS. | INTERMEDIATE
AMOUNT TIME SPENT
AFLOAT NEAR
NAVIGATION. | INTERMEDIATE IMPACT ON NAVIGATION AND INFLUENCE OF MOORING LINES. | HANDLING OF
RELATIVELY
SMALL UNITS | GREATEST AMOUNT
OF TIME INFLUENC-
ING TRAFFIC WITH
GREATEST RISK OF
IMPACT. | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | RISK OF
ATTAINING
TOLERANCE | POTENTIAL OPTION OF INSTALLING GATES AND EQUIPMENT IN PREFAB. FACILITY. | FREQUENTLY REQUIRES THE USE OF PRESTRESSING AND THIN WALLS RESULTING IN DURABILITY RISKS. | INTERMEDIATE NUMBER OF JOINTS, AND WALL THICKNESS CAN BE INCREASED. | REQUIRES INSTALL-
ING LARGE GATES
(TAINTER, MITER,
ETC.) IN A CON-
FINED SPACE
BETWEEN
BULKHEADS. | HANDLING OF
RELATIVELY
SMALL UNITS. | LARGEST NUMBER OF JOINTS, AND TYPICALY REQUIRES GATE INSTALLATION IN THE FIELD. | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | INSTALLATION
RISK | REDUCED
NUMBER OF,
AND TOTAL
DURATION OF,
INSTALLATIONS | LARGE FORCES TO
HANDLE DURING
INSTALLATION. | USE OF LARGE EQUIPMENT WITH GOOD CONTROL. WEIGHT RESISTS CURRENT FORCES. | HANDLING OF HEAVY UNITS REQUIRES PLANNING AND MOBILIZTION OF LARGE EQUIPMENT. | SMALLER UNITS
MAY BE EASIER TO
HANDLE WITH
REDUCED FORCES. | SMALL UNITS HAVE
REDUCED WEIGHT
TO RESIST CURRENT
FORCES, AND NUM-
BER OF
OPERATIONS. | - 1. VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. - 2. THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF A VALUE, (B) THE TIME VALUE OF MONEY, AND (C) RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | | FLOAT | Γ-IN OPTION | HEAVY-L | IFT OPTION | LIGHT-I | LIFT OPTION | |------------------------------------|---|--|--|--|---|--| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | SCHEDULE
RELIABILITY | MINIMIZES EXPOSURE TIME TO RIVER CONDITIONS | RISK OF MAINTAIN-
ING LARGE PREPARED
FOUNDATION. RISK
OF SINKING. | USE OF LARGE
CERTIFIED VESSELS
RESULTS IN GOOD
CONTROL. | TYPICALLY, MORE TIME SPENT EXPOSED TO RIVER CONDITIONS THAN FOR FLOAT-IN | USE OF FAMILIAR CERTIFIED EQUIPMENT ON HIGHLY REPETITIVE OPERATIONS | MOST TIME SPENT WORKING IN THE RIVER WITH RISK OF TOLERANCE ERRORS REQUIRING CORRECTION. | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | SUMMATION OF
VALUE | | | | | | | | MATRIX S-2 C | MATRIX S-2 CONSTRUCTION METHOD SELECTION MATRIX | | | | | | | | | |--|---|---|--|---|--|---|--|--|--| | | FLOAT | -IN OPTION | HEAVY-LIF | T OPTION | LIGHT-LI | FT OPTION | | | | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | | | | RISK OF
CLAIMS | REDUCE TIME
SPENT EXPOSED
TO RIVER
CONDITIONS. | RISK AVERSION ASSOCIATED WITH POTENTIAL LOSS OF LARGE UNIT. | REDUCED CONSE-
QUENCE ASSOCIATED
WITH THE LOSS OF A
SINGLE UNIT. | EXPENSIVE EQUIP-
MENT USED, AND
MORE TIME SPENT
IN THE RIVER THAN
FLOAT-IN. | SIGNIFICANTLY REDUCED CONSE- QUENCE ASSOCI- ATED WITH THE LOSS OF A SINGLE UNIT. | INCREASED NUMBER OF OPERATIONS, AND JOINTS. | | | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | | | PROVEN TRACK
RECORD | NUMEROUS
FLOAT-IN PROJ-
ECTS: OFFSHORE;
IMMERSED
TUBES; BRIDGE
PIERS; ETC. | SOME LOST PROJECTS | NUMEROUS PAR-
TIALLY BUOYANT
PROJECTS FOR:
BRIDGE PIERS,
IMMERSED TUBES;
AND STORM SURGE
BARRIERS. | SOME UNITS PLACED SOME- WHAT OUT OF POSITION. | COMMON-
TECHNOLOGY,
FREQUENTLY USED. | SUCCESS HIGHLY
DEPENDENT ON
CONTRACTOR
SKILL. SEVERAL
FAILURES. | | | | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | | | | AVAILABILITY
OF EQUIPMENT | REQUIRES
MINIMAL USE OF
EQUIPMENT. | DRAFT LIMITATIONS
MAY REQUIRE
MULTIPLE STEPS
USING DIFFERENT
EQUIPMENT. | SOME TYPES OF
HEAVY-LIFT EQUIP-
MENT CAN READILY
BE ASSEMBLED. | LARGE EQUIPMENT
IS NOT READILY
AVAILABLE. | EQUIPMENT
COMMONLY
AVAILABLE. | EQUIPMENT NOT
ALWAYS WELL
MAINTAINED. | | | | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | | | | AVAILABILITY
OF PREFAB.
FACILITIES | FABRICATION ON
A BARGE IS
TYPICALLY
AVAILABLE UPON
SHORT NOTICE. | LIMITED SELECTION
OF EXISTING SITES
WITH LONG LEAD
TIMES ON NEW SITES. | MORE FABRICATION
OPTIONS ARE AVAIL-
ABLE THAN FOR
FLOAT-IN METHODS. | POTENTIAL EPA
AND CULTURAL
STUDIES IMPACT
ON NEW SITES. | EXISTING SITES ARE
TYPICALLY
AVAILABLE. | EXISTING SITES
TYPICALLY PLACE
LIMITS ON UNIT
SIZES AND SHAPES. | | | | - 1. VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. - 2. THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF VALUE, (B) TO CORRECT FOR THE TIME VALUE OF MONEY, AND (C) TO ACCOUNT FOR RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | | FLOAT | Γ-IN OPTION | HEAVY-LIF | T OPTION | LIGHT-L | IFT OPTION | |------------------------------------|---------------------------------------
---|---|---|---------------------------------------|---| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | QUALIFIED
CONTRACTORS | NUMEROUS
QUALIFIED
CONTRACTORS. | EXISTING FABRICATION FACILITIES GIVE SOME CONTRACTORS AN ADVANTAGE. | LIMITS SELECTION OF
CONTRACTORS TO
THE FEW MOST
QUALIFIED. | EXISTING EQUIPMENT GIVES SOME CONTRACTORS AN ADVANTAGE. | NUMEROUS
CONTRACTORS
AVAILABLE. | OPENS COMPETITION TO RISKIER CONTRACTORS. | | WEIGHTED
VALUE
(ADJ. X VAL.) | | | | | | | | SUMMATION OF
VALUE | | | | | | | | | SITIN | G OPTIONS | LOAD-OUT | SYSTEMS | IN-FACILITY | TRANSPORT | |---|---|--|--|---|--|---| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | GRAVING
DOCK | SOME EXISTING
SITES ARE
AVAILABLE. | DEVELOPMENT OF
NEW SITES MAY
EXPOSE CORPS TO
EPA AND CULTURAL
STUDIES IMPACTS. | FLOAT-OUT IS A
SIMPLE AND A WELL-
UNDERSTOOD,
TECHNOLOGY. | REMOVAL OF
EXISTING GATE CAN
BE A COMPLICATION
AND AN EXPENSE. | OVERHEAD GANTRY
CRANES MAY BE
AVAILABLE AT SOME
SITES. | WORKING IN A
HOLE MAKES
ACCESS MORE
DIFFICULT. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹) | | | | | | | | PRECAST
YARD | SEVERAL
EXISTING SITES
ARE AVAILABLE. | DEVELOPMENT OF
NEW SITES MAY
EXPOSE CORPS TO
EPA AND CULTURAL
STUDIES IMPACTS. | SKID-WAYS, OR LIFT-
OFF OF BULKHEAD
ARE PROVEN
PRACTICAL
METHODS. | EXPENSE OF LOAD-
OUT SYSTEM. | NUMEROUS OPTIONS
AVAILABLE SUCH AS:
SKIDDING, JACKS,
CRAWLERS, AIR-LIFT,
ROLLERS, ETC. | NEED TO SUPPORT
FREQUENTLY
UNUSUAL SHAPES
WHILE
TRANSPORTING IN-
FACILITY. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹) | | | | | | | | FABRICATE
ON BARGE | NO EXPOSURE
TO EPA OR
CULTURAL
STUDIES
IMPACT. | SIZE LIMITATIONS. | NUMEROUS OPTIONS SUCH AS: LAUNCH FROM TILTING BARGE; SINKING BARGE; USE OF A LOCK; USE OF A SKIDWAY AND CRADLE; USE OF A CRANE; ETC. | NEED TO GET UNITS
OF BARGES ENTAILS
EXTRA EXPENSE. | TYPICALLY THE UNITS ARE NOT MOVED AROUND ON THE BARGE, BUT RATHER THE BARGE IS MOVED WITH THE UNIT. SKIDDING ON AND OFF THE BARGE IS POSSIBLE. | SPACE LIMITATION
ON BARGE DECK.
LOAD LIMITATIONS
ON BARGE DECK. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹) | | | | | | | | SHIPYARD NOTES: | SEVERAL SHIP-
YARDS EXIST ON
THE INLAND
WATERWAYS. | SHIPYARDS TYPIC-
ALLY GIVE PRIORITY
TO SHIP BUILDING,
AND THUS MAY NOT
BE AVAILABLE. | LAUNCH WAYS
TYPICALLY ALREADY
EXIST. | SOME STRUCTURES
MAY REQUIRE
STRENGTHENING
FOR LAUNCH. | EXISTING. | MAY REQUIRE
MODIFICATION FOR
CONCRETE
STRUCTURES. | - 1. VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. - 2. THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF A VALUE, (B) TO CORRECT FOR THE TIME VALUE OF MONEY, AND (C) TO ACCOUNT FOR RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | MATRIX S-3 (0 | CONCLUDED) | | | | | | |---|---|--|--------------------|-----------------------|---|---| | | SITING | SITING OPTIONS | | LOAD-OUT SYSTEMS | | TRANSPORT | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹) | | | | | | | | MULTILEVEL
FACILITY | VERSATILE
SYSTEM THAT
CAN COMBINE
SKIDWAYS AND
GRAVING DOCKS. | EXPENSIVE AND REQUIRES NEW DEVELOPMENT WITH EPA AND CULTURAL IMPACT POTENTIAL. | SEE GRAVING DOCKS. | SEE GRAVING
DOCKS. | SEE PRECAST YARD
AND GRAVING
DOCKS. | SEE PRECAST YARD
AND GRAVING
DOCKS. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹) | | | | | | | | SUMMATION OF VALUE | | | | | | | | | FLOAT- | -IN METHOD | HEAVY-LIFT- | IN METHOD | LIGHT-LIF | Γ-IN METHOD | |--|---|---|--|---|---|--| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | TIE-IN TO
EXISTING
STRUCTURES | SPEED OF
CONNECTION TO
EXISTING
STRUCTURES. | MAY REQUIRE RELAXED TOLERANCES FOR CONNECTION. | PRECISION OF LARGE
HANDLING
EQUIPMENT. | MAY REQUIRE ADEQUATE SPACE FOR HANDLING EQUIPMENT | SMALLER UNITS
CAN BE
POSITIONED
ACCURATELY. | MAY REQUIRE EXTRA TIME TO COMPLETE CONNECTION. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | NAVIGATION
CONTROL | SPEED OF
INSTALLATION
MAY MINIMIZE
CONTROL
REQUIREMENTS | MAY REQUIRE
CONTROL FOR BOTH
TOW AND
INSTALLATION. | QUICK DEPLOYMENT
AND QUICK
WITHDRAWAL MAY
MINIMIZE
NAVIGATION
CONTROL. | | QUICK DEPLOY-
MENT AND QUICK
WITHDRAWAL
MAY MINIMIZE
NAVIGATION
CONTROL. | SMALL UNIT SUBJECT TO IMPACT DAMAGE, AND EXTRA TIME REQUIRED FOR INSTALLATION. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | OFFSITE
STAGING
AREAS | SOME PRE-
EXISTING
GRAVING DOCKS,
LAUNCH WAYS,
OR SHIPYARDS
MAY BE
AVAILABLE. | NEW SITES MAY
REQUIRE EPA AND
CULTURAL STUDIES
APPROVAL. | SOME PRE-EXISTING
SKIDWAYS, PIERS,
BULKHEAD WALLS,
ETC. MAY BE
AVAILABLE. | NEW SITES MAY
REQUIRE EPA AND
CULTURAL STUDIES
APPROVAL. | PRE-EXISTING SITES ARE MORE LIKELY TO BE AVAILABLE THAN FOR HEAVY-LIFT OR FLOAT-IN OPTIONS. | UNITS SUITABLE FOR FABRICATION IN EXISTING FACILITIES MAY NOT BE OPTIONAL FOR CONSTRUCTION PLAN. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | SURVEY
CONTROLS | PRE-
ESTABLISHED
SURVEY SYSTEM
CAN TYPICALLY
CONTROL
POSITIONING TO
+/- 2 IN. | PREPLANNING AND
EXPENSE OF QUALITY
SURVEY SYSTEMS. | PRE-ESTABLISHED
SURVEY SYSTEM CAN
TYPICALLY CONTROL
POSITIONING TO
+/- 1.5 IN. | PREPLANNING AND
EXPENSE OF
QUALITY SURVEY
SYSTEMS. | PRE-ESTABLISHED
SURVEY SYSTEM
CAN TYPICALLY
CONTROL
POSITIONING TO
+/- 1 IN. | PREPLANNING AND
EXPENSE OF
QUALITY SURVEY
SYSTEMS. | - 1. VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. - 2. THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF A VALUE, (B) TO CORRECT FOR THE TIME VALUE OF MONEY, AND (C) TO ACCOUNT FOR RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | | FLOAT | T-IN METHOD | HEAVY-LIF | T-IN METHOD | LIGHT-LII | T-IN METHOD | |--|---|--|--|---|--|---| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | STATION
KEEPING
SYSTEMS | MOORING LINES, VERTICAL TENSION LINES, OR DOLPHINS CAN BE USED EFFECTIVELY FOR STATION KEEPING. | TYPICALLY LARGER
AND MORE COSTLY
STATION KEEPING
SYSTEMS ARE
REQUIRED THAN FOR
LIFT-IN OPTIONS. | MOORING LINES,
SPUD-PILES,
VERTICAL TENSION
LINES, AND JACKS
CAN BE USED
EFFECTIVELY. | EXPENSE AND
PREPLANNING OF
SYSTEMS. | MOORING LINES,
SPUD-PILES,
REACTION
FRAMES, AND
JACKS CAN BE
USED
EFFECTIVELY. | SMALLER UNITS
MAY REQUIRE
MORE POSITIVE
SYSTEMS TO RESIST
CURRENT FORCES. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | SUMMATION OF
VALUE | | | | | | | | MATRIX S-5 | RIX S-5 PRECAST CONCRETE UNIT SELECTION MATRIX | | | | | | | | |--|--
---|---|---|--|---|--|--| | | FLOA | T-IN METHOD | HEAVY-LIFT- | IN METHOD | LIGHT-LIF | T-IN METHOD | | | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | | | WALL
THICKNESS | FLOATABLE
WALL
THICKNESSES
ARE
ACCEPTABLE | MAXIMUM WALL THICKNESS IS TYPICALLY LIMITED BY DRAFT LIMITATIONS. | WALL THICKNESSES
CAN TYPICALLY BE
GREATER THAN
FLOAT-IN | GREATER WALL THICKNESSES INCREASE EQUIP- MENT COST AND REQUIREMENTS. | WALL THICKNESSES CAN TYPICALLY BE GREATER THAN FLOAT-IN | WALL THICKNESS
MAY BE LIMITED BY
LIFTING EQUIPMENT
CAPACITY. | | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | | COMPOSITE
ACTION | COMPOSITE ACTION CAN REDUCE REIN- FORCING STEEL REQUIREMENTS | COMPOSITE ACTION CAN
INCREASE DETAILING
REQUIREMENTS | COMPOSITE ACTION
CAN REDUCE
REINFORCING STEEL
REQUIREMENTS | COMPOSITE ACTION
CAN INCREASE
DETAILING
REQUIREMENTS | COMPOSITE ACTION CAN REDUCE REIN- FORCING STEEL REQUIREMENTS | COMPOSITE ACTION
CAN INCREASE
DETAILING
REQUIREMENTS | | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | | MATERIAL | POTENTIAL
ADVANTAGE IN
USING
PRESTRESSING
STEEL. | USE OF LIGHTWEIGHT CONCRETE MAY BE REQUIRED FOR DRAFT CONSIDERATIONS. POTENTIAL CORROSION OF PRESTRESSING STEEL. | REDUCED, OR NO
NEED FOR
PRESTRESSING STEEL. | INTERMEDIATE
NEED FOR JOINT-
FILLING MATERIAL. | FAMILIAR
TECHNOLOGY TO
MANY
CONTRACTORS. | POTENTIAL REQUIREMENT FOR EXCESSIVE AMOUNTS OF JOINT FILLING MATERIAL. | | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | | CONCRETE
COVER | HIGH PERFORMANCE PRECAST CONCRETE CAN BE USED TO REDUCE COVER REQUIREMENT IN SOME CASES. | CONCRETE COVER REQUIREMENT CAN ADVERSELY AFFECT DRAFT, AND MAY REQUIRE SECONDARY REINFORCING MESH IN THE COVER FOR CRACK CONTROL. | HIGH PERFORMANCE
PRECAST CONCRETE
CAN BE USED TO
REDUCE COVER
REQUIREMENT IN
SOME CASES. | CONCRETE COVER REQUIREMENT MAY REQUIRE SECONDARY REINFORCING MESH IN THE COVER FOR CRACK CONTROL. | HIGH PERFORMANCE PRECAST CONCRETE CAN BE USED TO REDUCE COVER REQUIREMENT IN SOME CASES. | CONCRETE COVER REQUIREMENT MAY REQUIRE SECONDARY REINFORCING MESH IN THE COVER FOR CRACK CONTROL. | | | - 1. VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. - 2. THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF A VALUE, (B) TO CORRECT FOR THE TIME VALUE OF MONEY, AND (C) TO ACCOUNT FOR RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | MATRIX S-5 (C | MATRIX S-5 (CONCLUDED) | | | | | | | | | |--|---|--|--|--|--|--|--|--|--| | | FLOAT-IN METHOD | | HEAVY-LIFT- | IN METHOD | LIGHT-LIF | T-IN METHOD | | | | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | | | CONNECTION -
LOAD PATH | FLOAT-IN UNIT
INHERENTLY HAS
SUBSTANTIAL
CAPACITY, THUS
LIMITING NEED
FOR COMPOSITE
ACTION. | NEED FOR WATER-
TIGHT BULKHEADS
CAN DISRUPT LOAD
PATH REQUIRING
EXTRA DETAILS. | REDUCED REQUIREMENT FOR INTERNAL WALLS AND/OR BASE SLABS FACILITATES COMPOSITE ACTION. | LACK OF INHERENT
STRENGTH IN SHELL
PLACES GREATER
DEMANDS ON
COMPOSITE ACTION. | REDUCED REQUIREMENT FOR INTERNAL WALLS AND/OR BASE SLABS FACILITATES COMPOSITE ACTION. | MULTIPLE JOINTS
DISRUPT LOAD
PATH. | | | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | | | SUMMATION OF
VALUE | | | | | | | | | | | | FLOAT-IN METHOD | | HEAVY-LIFT-IN METHOD | | LIGHT-LIFT-IN METHOD | | |--|--|--|---|---|---|---| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | GATE
ASSEMBLY | GATES CAN EITHER BE ASSEMBLED BETWEEN DEWATERED BULKHEAD, OR CAN BE PRE- ASSEMBLED AND CARRIED IN. | ASSEMBLY WORK IN A CONFINED SPACE SUBJECT TO FLOODING, OR REQUIREMENT TO CARRY PRE- ASSEMBLED GATE IN PLACE. | GATES CAN BE PRE-
ASSEMBLED ON A
BARGE, OR ON SHORE
AND CARRIED INTO
PLACE. | MAY REQUIRE FINAL INSTALLATION IN A CONFINED SPACE BETWEEN DEWATERED BULKHEADS. | SOME SUB-
ASSEMBLY WORK
AND BE
PREFORMED. | IT MAY BE DIFFICULT/ INEFFICIENT TO ASSEMBLE GATES IN POSITION. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | GATE
INSTALLATION | FLOAT-IN UNITS
FREQUENTLY
HAVE SUFFICIENT
CAPACITY TO
CARRY-IN PRE-
INSTALLED
GATES. | PRE-INSTALLED GATES CAN NEGATIVELY AFFECT DRAFT AND STABILITY, AND CAN POSE A LOGISTICS PROBLEM. | PRE-ASSEMBLED GATES CAN FREQUENTLY BE FLOATED OR LIFTED INTO POSITION. | INSTALLATION OF
PRE-ASSEMBLED
GATES CAN
REQUIRE THE USE
OF SUPPLEMENTAL
BARGES OR
CRANES. | SUBASSEMBLIES
OF GATES CAN BE
LIFTED INTO
POSITION. | LESS EFFECTIVE
THAN EITHER
HEAVY-LIFT, OR
FLOAT-IN. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | LIFTING
FRAMES | NOT NORMALLY
USED. | NORMALLY NOT USED
WITH FLOAT-IN. | CAN BE USED TO
SUPPLEMENT
STRENGTH OF WEAK
SHELLS. | REQUIRE MULTIPLE
USE TO BE COST
EFFECTIVE. | CAN BE USED TO
SUPPLEMENT
STRENGTH OF
WEAK ELEMENTS. | REQUIRE MULTIPLI
USE TO BE COST
EFFECTIVE. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .)
NOTES: | | | | | | | - 1. VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. - 2. THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF A VALUE, (B) TO CORRECT FOR THE TIME VALUE OF MONEY, AND (C) TO ACCOUNT FOR RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | MATRIX S-6 (CONCLUDED) | | | | | | | | |--|--|--|--|---|---|---|--| | | FLOAT-IN METHOD | | HEAVY-LIFT-IN METHOD | | LIGHT-LIFT-IN METHOD | | | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | | TEMPLATE
FRAMES | CAN BE USED TO
AID IN
POSITIONING. | NOT NORMALLY
USED EXCEPT AS
DOLPHINS. | CAN BE HANDLED
EFFECTIVELY WITH
HEAVY-LIFT SYSTEM. | REQUIRES MULTIPLE USE TO BE COST EFFECTIVE. | CAN BE USED EFFECTIVELY TO GUIDE SMALL UNITS. | REQUIRE MULTIPLE
USE TO BE COST
EFFECTIVE. | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | MECHANICAL
EQUIPMENT | CAN BE PRE-
INSTALLED ON
FLOAT-IN UNITS. | DRAFT RESTRICTIONS
MAY PROHIBIT THIS
OPTION. | CAN BE PRE-
INSTALLED ON
HEAVY-LIFT UNITS. | HANDLING
REQUIREMENTS
MAY LIMIT THIS
OPTION. | LIGHT-LIFT CRANE
CAN BE USED TO
INSTALL
EQUIPMENT. | DEPENDS ON
COMPATIBILITY OF
CRANE AND
EQUIPMENT. | | | WEIGHTED
VALUE
(ADJ ² , X VAL ¹ .) | | | | | | | | | SUMMATION OF VALUE | | | | | | | | | | FLOATING | | PARTIALLY BUOYANT | | LIFT-IN | | |--|---|---|--|--|---|--| | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | SAFETY | FLOAT-IN UNITS
CAN BE CARRIED
ON BARGES FOR
LONG TOWS. | RISK AVERSION MAY
REQUIRE DESIGN FOR
SEVERE CONDITIONS
DURING TOW. | LIFT VESSEL CAN
PROVIDE CONTROL,
AND IS PRE-CERTIFIED
FOR SAFETY. | FOR LONG TOWS,
TRANSPORT ON A
BARGE MAY BE
ADVISABLE.
BUOYANCY COULD
BE LOST. | A PRECERTIFIED
AND POTENTIALLY
TRIAL TESTED
VESSEL IS USED. |
FOR LONG TOWS,
TRANSPORT ON A
BARGE MAY BE
ADVISABLE. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | IMPACT ON
NAVIGATION | TRANSPORT MAY
BE QUICK TO
AVOID
INTERFERENCE. | TRANSPORT MAY BE
SLOW AND MAY
INTERFERE WITH
TRAFFIC. | TRANSPORT OF PARTIALLY BUOYANT UNITS IS TYPICALLY OVER SHORT DISTANCES. | TRANSPORT MAY BE SLOW. | UNITS CARRIED IN
BY A CRANE ARE
NORMALLY
TRANSPORTED
OVER SHORT
DISTANCES. | TRANSPORT MAY
BE SLOW. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | RISK OF
ACCIDENT | TIME SPENT IN
THE RIVER CAN
BE MINIMIZED. | IMPACT WITH BARGE
TOWS, OR SINKING IN
THE CHANNEL ARE
RISKS. | THE LIFT VESSEL CAN
REDUCE THE RISK OF
ACCIDENTS. | IMPACT WITH
BARGE TOWS OR
SINKING IN THE
CHANNEL ARE
RISKS. | THE LIFT VESSEL
CAN REDUCE THE
RISK OF
ACCIDENTS. | RISK OF IMPACT ON
THE LIFTING
VESSEL. | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | ^{1.} VALUE EXPRESSED AS A MONETARY QUANTITY RELATIVE TO A SELECTED STANDARD OF COMPARISON, WITH POSITIVE VALUES EXPRESSING BENEFITS AND NEGATIVE VALUES EXPRESSING COSTS. ^{2.} THE ADJUSTMENT FACTOR IS INTENDED (A) TO CORRECT FOR THE PROBABILITY OF OCCURRENCE OF A VALUE, (B) TO CORRECT FOR THE TIME VALUE OF MONEY, AND (C) TO ACCOUNT FOR RISK AVERSION TO MAJOR FAILURE OR LOSS OF LIFE. | MATRIX S-7 (CONCLUDED) | | | | | | | | |--|--|---|---|---|--|--|--| | | FLOATING | | PARTIALLY BUOYANT | | LIFT-IN | | | | ITEM | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | ADVANTAGE | DISADVANTAGE | | | EXPOSURE TO
RIVER
CONDITIONS | TIME SPENT IN
THE RIVER CAN
BE MINIMIZED. | LOW OR HIGH WATER CONDITION CAN POSE TRANSPORT PROBLEMS. AND LOAD-OUT MAY BE A PROBLEM. PREFABRICATION SITE COULD BE SUBJECT TO FLOODING AT HIGH WATER. | UNITS ARE TYPICALLY
LARGE WITH
INTERMEDIATE TIME | PARTIALLY BUOYANT UNITS ARE TYPICALLY SMALLER THAN FLOAT-IN UNITS AND THUS MAY REQUIRE MORE TIME EXPOSED TO RIVER CONDITIONS. | LIFTING VESSELS
REMOVE THE
UNITS OUT OF THE
RIVER FOR
TRANSPORT. | CARRIED IN UNITS ARE TYPICALLY SMALLER THAN EITHER FLOAT-IN OR PARTIALLY BUOYANT, WHICH MAY REQUIRE MORE RIVER EXPOSURE. | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | TRACK RECORD | NUMEROUS FLOAT-IN STRUCTURES HAVE BEEN BUILT SUCCESSFULLY. | A FEW COMPLETE
LOSSES HAVE
OCCURRED FOR
FLOAT-IN
STRUCTURES. | NUMEROUS
PARTIALLY BUOYANT
STRUCTURES HAVE
BEEN SUCCESSFULLY
INSTALLED. | SOME POSITIONING
PROBLEMS HAVE
OCCURRED. | NUMEROUS CARRIED IN STRUCTURES HAVE BEEN SUCCESSFULLY BUILT. | SOME EQUIPMENT
PROBLEMS HAVE
BEEN
ENCOUNTERED. | | | WEIGHTED
VALUE
(ADJ ² . X VAL ¹ .) | | | | | | | | | SUMMATION OF
VALUE | | | | | | | |